1,667 research outputs found

    Collective optomechanical effects in cavity quantum electrodynamics

    Full text link
    We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipoles with a polymer we calculate the partition function of the coupled light-matter system and demonstrate it exhibits a second order phase transition between a bunched state of isotropic orientations and a stretched one with all the dipoles aligned. Such a transition manifests itself as an intensity-dependent shift of the polariton mode resonance. Our work, lying at the crossroad between cavity quantum electrodynamics and quantum optomechanics, is a step forward in the on-going quest to understand how strong coupling can be exploited to influence matter internal degrees of freedom.Comment: 6 pages, 3 figure

    Strong coupling of ionising transitions

    Full text link
    We demonstrate that a ionising transition can be strongly coupled to a photonic resonance. The strong coupling manifests itself with the appearance of a narrow optically active resonance below the ionisation threshold. Such a resonance is due to electrons transitioning into a novel bound state created by the collective coupling of the electron gas with the vacuum field of the photonic resonator. Applying our theory to the case of bound-to-continuum transitions in microcavity-embedded doped quantum wells, we show how those strong-coupling features can be exploited as a novel knob to tune both optical and electronic properties of semiconductor heterostructures.Comment: 10 pages, 7 figure

    An engineered planar plasmonic reflector for polaritonic mode confinement

    Full text link
    It was recently demonstrated that, in deep subwavelength gap resonators coupled to two-dimensional electron gases, coupling to propagating plasmons can lead to energy leakage and prevent the formation of polaritonic resonances. This process, akin to Landau damping, limits the achievable field confinement and thus the value of light-matter coupling strength. In this work, we show how plasmonic subwavelength reflectors can be used to create an artificial energy stopband in the plasmon dispersion, confining them and enabling the recovery of the polaritonic resonances. Using this approach we demonstrate a normalized light-matter coupling ratio of {\Omega}/{\omega} = 0.35 employing a single quantum well with a gap size of {\lambda}/2400 in vacuum.Comment: 13 pages, 3 figure

    Efficacy of sonic and ultrasonic irrigation devices in the removal of debris from canal irregularities in artificial root canals

    Get PDF
    Objective: To evaluate the efficacy of different sonic and ultrasonic devices in the elimination of debris from canal irregularities in artificial root canals. Materials and Methods: A resin model of a transparent radicular canal filled with dentin debris was used. Five groups were tested, namely: Group 1 – ultrasonic insert 15.02; Group 2 – ultrasonic insert 25/25 IRRI K; Group 3 – ultrasonic insert 25/25 IRRI S; Group 4 – sonic insert 20/28 Eddy on a vibrating sonic air-scaler handpiece; Group 5 – 20.02 K-file inserted on a Safety M4 handpiece. Two different irrigants (5% sodium hypochlorite and 17% EDTA) and 3 different times of activation (20, 40, and 60 seconds) were tested. Means and standard deviations were calculated and statistically analyzed with the Kruskal-Wallis and Wilcoxon tests (p<0.05). Results: No statistically significant differences were found between the two irrigants used. Group 4 removed more debris than the other groups (p<0.05). Groups 1, 2, and 3 removed more debris than group 5 (p<0.05). A statistically significant difference (p<0.05) was found for the time of activation in all groups and at all canal levels, except between 40 and 60 seconds in group 4 at coronal and middle third level (p>0.05). Conclusions: No significant differences were found between 5% sodium hypochlorite and 17% EDTA. When the time of activation rises, the dentin debris removal increases in all groups. Both sonic and ultrasonic activation demonstrate high capacity for dentin debris removal

    Efficacy of sonic and ultrasonic irrigation devices in the removal of debris from root canal irregularities in artificial root canals

    Get PDF
    Objective: to evaluate the efficacy of different sonic and ultrasonic devices in the elimination of debris from canal irregularities in artificial root canals. Materials and Methods: a resin model of a transparent radicular canal filled with dentin debris was used. Five groups were tested, namely: Group 1 - ultrasonic insert 15.02; Group 2 - ultrasonic insert 25/25 IRRI K; Group 3 - ultrasonic insert 25/25 IRRI S; Group 4 - sonic insert 20/28 Eddy on a vibrating sonic air-scaler handpiece; Group 5 - 20.02 K-file inserted on a Safety M4 handpiece. Two different irrigants (5% sodium hypochlorite and 17% EDTA) and 3 different times of activation (20, 40, and 60 seconds) were tested. Means and standard deviations were calculated and statistically analyzed with the Kruskal-Wallis and Wilcoxon tests (p0.05). Conclusions: no significant differences were found between 5% sodium hypochlorite and 17% EDTA. When the time of activation rises, the dentin debris removal increases in all groups. Both sonic and ultrasonic activation demonstrate high capacity for dentin debris removal

    Excitons bound by photon exchange

    Full text link
    In contrast to interband excitons in undoped quantum wells, doped quantum wells do not display sharp resonances due to excitonic bound states. In these systems the effective Coulomb interaction between electrons and holes typically only leads to a depolarization shift of the single-electron intersubband transitions. Non-perturbative light-matter interaction in solid-state devices has been investigated as a pathway to tune optoelectronic properties of materials. A recent theoretical work [Cortese et al., Optica 6, 354 (2019)] predicted that, when the doped quantum wells are embedded in a photonic cavity, emission-reabsorption processes of cavity photons can generate an effective attractive interaction which binds electrons and holes together, leading to the creation of an intraband bound exciton. Spectroscopically, this bound state manifests itself as a novel discrete resonance which appears below the ionisation threshold only when the coupling between light and matter is increased above a critical value. Here we report the first experimental observation of such a bound state using doped GaAs/AlGaAs quantum wells embedded in metal-metal resonators whose confinement is high enough to permit operation in strong coupling. Our result provides the first evidence of bound states of charged particles kept together not by Coulomb interaction, but by the exchange of transverse photons. Light-matter coupling can thus be used as a novel tool in quantum material engineering, tuning electronic properties of semiconductor heterostructures beyond those permitted by mere crystal structures, with direct applications to mid-infrared optoelectronics
    • …
    corecore