1,177 research outputs found

    Presynaptic mGlu1 Receptors Control GABAB Receptors in an Antagonist-Like Manner in Mouse Cortical GABAergic and Glutamatergic Nerve Endings

    Get PDF
    Mouse cortical GABAergic synaptosomes possess presynaptic inhibitory GABAB autoreceptors. Accordingly, (\ub1)baclofen (3 \u3bcM) inhibits in a CGP53423-sensitive manner the 12 mM KCl-evoked release of preloaded [3H]GABA. Differently, the existence of presynaptic release-regulating metabotropic glutamate type 1 (mGlu1) heteroreceptors in these terminals is still matter of discussion, although confocal microscopy unveiled the existence of mGlu1\u3b1 with GABAB1 or GABAB2 proteins in cortical VGAT-positive synaptosomes. The group I mGlu agonist 3,5-DHPG failed to modify on its own the 12 mM KCl-evoked [3H]GABA exocytosis from cortical nerve endings, but, when added concomitantly to the GABAB agonist, it significantly reduced the 3 \u3bcM (\ub1)baclofen-induced inhibition of [3H]GABA exocytosis. Conversely, the mGlu1 antagonist LY367385 (0.03\u20131 \u3bcM), inactive on its own on GABA exocytosis, amplified the 3 \u3bcM (\ub1)baclofen-induced inhibition of [3H]GABA overflow. The ( \ub1 )baclofen-induced inhibition of [3H]GABA exocytosis was more pronounced in cortical synaptosomes from Grm1crv4/crv4 mice, which bear a spontaneous mutation of the Grm1 gene leading to the functional inactivation of the mGlu1 receptor. Inasmuch, the expression of GABAB2 receptor protein in cortical synaptosomal lysates from Grm1crv4/crv4 mice was increased when compared to controls. Altogether, these observations seem best interpreted by assuming that mGlu1 coexist with GABAB receptors in GABAergic cortical synaptosomes, where they control GABA receptors in an antagonist-like manner. We then asked whether the mGlu1-mediated control of GABAB receptors is restricted to GABAergic terminals, or if it occurs also in other subpopulations of nerve endings. Release-regulating GABAB receptors also exist in glutamatergic nerve endings. (\ub1)baclofen (1 \u3bcM) diminished the 12 mM KCl-evoked [3H]D-aspartate overflow. Also in these terminals, the concomitant presence of 1 \u3bcM LY367385, inactive on its own, significantly amplified the inhibitory effect exerted by (\ub1)baclofen on [3H]D-aspartate exocytosis. Confocal microscopy confirmed the colocalization of mGlu1 with GABAB1 and GABAB2 labeling in vesicular glutamate type1 transporter-positive particles. Our results support the conclusion that mGlu1 receptors modulate in an antagonist-like manner presynaptic release-regulating GABAB receptors. This receptor\u2013receptor interaction could be neuroprotective in central disease typified by hyperglutamatergicity

    On the weaknesses of PBKDF2

    Get PDF
    Password-based key derivation functions are of particular interest in cryptography because they (a) input a password/passphrase (which usually is short and lacks enough entropy) and derive a cryptographic key; (b) slow down brute force and dictionary attacks as much as possible. In PKCS#5 [17], RSA Laboratories described a password based key derivation function called PBKDF2 that has been widely adopted in many security related applications [6, 7, 11]. In order to slow down brute force attacks, PBKDF2 introduce CPU-intensive operations based on an iterated pseudorandom function. Such a pseudorandom function is HMAC-SHA-1 by default. In this paper we show that, if HMAC-SHA-1 is computed in a standard mode without following the performance improvements described in the implementation note of RFC 2104 [13] and FIPS 198-1 [14], an attacker is able to avoid 50% of PBKDF2’s CPU intensive operations, by replacing them with precomputed values. We note that a number of well-known and widely-used crypto libraries are subject to this vulnerability.In addition to such a vulnerability, we describe some other minor optimizations that an attacker can exploit to reduce even more the key derivation time

    Determination of the color temperature in laser-produced shocks

    Get PDF
    Experimental results on the determination of the color temperature in shock waves produced with lasers are presented. The method is based on imaging the target rear side in two different spectral windows and on using phased zone plates to produce high-quality shocks. The shock velocity is also measured, allowing, with the use of the equation of state, the real shock temperature to be deduced and compared with the measured color temperature

    Presynaptic mGlu1 Receptors Control GABAB Receptors in an Antagonist-Like Manner in Mouse Cortical GABAergic and Glutamatergic Nerve Endings

    Get PDF
    Mouse cortical GABAergic synaptosomes possess presynaptic inhibitory GABAB autoreceptors. Accordingly, (±)baclofen (3 μM) inhibits in a CGP53423-sensitive manner the 12 mM KCl-evoked release of preloaded [3H]GABA. Differently, the existence of presynaptic release-regulating metabotropic glutamate type 1 (mGlu1) heteroreceptors in these terminals is still matter of discussion, although confocal microscopy unveiled the existence of mGlu1α with GABAB1 or GABAB2 proteins in cortical VGAT-positive synaptosomes. The group I mGlu agonist 3,5-DHPG failed to modify on its own the 12 mM KCl-evoked [3H]GABA exocytosis from cortical nerve endings, but, when added concomitantly to the GABAB agonist, it significantly reduced the 3 μM (±)baclofen-induced inhibition of [3H]GABA exocytosis. Conversely, the mGlu1 antagonist LY367385 (0.03–1 μM), inactive on its own on GABA exocytosis, amplified the 3 μM (±)baclofen-induced inhibition of [3H]GABA overflow. The ( ± )baclofen-induced inhibition of [3H]GABA exocytosis was more pronounced in cortical synaptosomes from Grm1crv4/crv4 mice, which bear a spontaneous mutation of the Grm1 gene leading to the functional inactivation of the mGlu1 receptor. Inasmuch, the expression of GABAB2 receptor protein in cortical synaptosomal lysates from Grm1crv4/crv4 mice was increased when compared to controls. Altogether, these observations seem best interpreted by assuming that mGlu1 coexist with GABAB receptors in GABAergic cortical synaptosomes, where they control GABA receptors in an antagonist-like manner. We then asked whether the mGlu1-mediated control of GABAB receptors is restricted to GABAergic terminals, or if it occurs also in other subpopulations of nerve endings. Release-regulating GABAB receptors also exist in glutamatergic nerve endings. (±)baclofen (1 μM) diminished the 12 mM KCl-evoked [3H]D-aspartate overflow. Also in these terminals, the concomitant presence of 1 μM LY367385, inactive on its own, significantly amplified the inhibitory effect exerted by (±)baclofen on [3H]D-aspartate exocytosis. Confocal microscopy confirmed the colocalization of mGlu1 with GABAB1 and GABAB2 labeling in vesicular glutamate type1 transporter-positive particles. Our results support the conclusion that mGlu1 receptors modulate in an antagonist-like manner presynaptic release-regulating GABAB receptors. This receptor–receptor interaction could be neuroprotective in central disease typified by hyperglutamatergicity

    Precision Measurement of KS Meson Lifetime with the KLOE detector

    Get PDF
    Using a large sample of pure, slow, short lived K0 mesons collected with KLOE detector at DaFne, we have measured the KS lifetime. From a fit to the proper time distribution we find tau = (89.562 +- 0.029_stat +- 0.043_syst) ps. This is the most precise measurement today in good agreement with the world average derived from previous measurements. We observe no dependence of the lifetime on the direction of the Ks.Comment: 5 pages, 7 figure

    Measurement of the η3π0\eta\to 3\pi^{0} slope parameter α\alpha with the KLOE detector

    Full text link
    We present a measurement of the slope parameter α\alpha for the η3π0\eta\to 3\pi^{0} decay, with the KLOE experiment at the DAΦ\PhiNE ϕ\phi-factory, based on a background free sample of \sim 17 millions η\eta mesons produced in ϕ\phi radiative decays. By fitting the event density in the Dalitz plot we determine \alpha = -0.0301 \pm 0.0035\,stat\;_{-0.0035}^{+0.0022}\,syst\,. The result is in agreement with recent measurements from hadro- and photo-production experiments.Comment: 14 pages, 11 figure

    Assessment of copy number variations in 120 patients with Poland syndrome

    Get PDF
    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown
    corecore