23 research outputs found

    Time-resolved profiling reveals ATF3 as a novel mediator of endocrine resistance in breast cancer

    Get PDF
    Breast cancer is one of the leading causes of death for women worldwide. Patients whose tumors express Estrogen Receptor α (ERα) account for ~70% of cases, and can be treated with targeted endocrine therapy. Endocrine therapy abrogates estrogen (E2) mediated tumor growth either by blocking the ER itself (tamoxifen, fulvestrant) or by inhibiting the enzyme responsible for E2 production (aromatase inhibitors). However, around 40% of the patients eventually relapse due to resistance development. While several advancements have been made and second-line treatments are available for relapsing patients, resistance remains an urgent clinical problem that needs to be addressed. To investigate the mechanisms underlying development of resistance to endocrine therapies, I utilized various strategies to tackle two different aspects. To identify novel drivers of resistance, I developed new resistant cell lines and investigated the early phases of the resistance process with a combination of high throughput techniques. The analysis revealed ATF3 as a putative regulator of the response to therapy and of the rewiring of cells' central processes. The role of ATF3 was validated in vitro modulating its expression through knockout, knockdown and overexpression. ATF3 was identified to be essential in controlling proliferation, cell cycle and apoptosis rate of the cells under treatment through the regulation of MAPK/AKT signaling pathways. Its role was confirmed in vivo in a xenograft mouse model and the high expression levels were verified in patient datasets, adding clinical relevance to the findings. The second aspect I investigated was the relevance of clonality in endocrine therapy resistance. To do this, I used a cellular barcoding approach to track single cells during resistance development against tamoxifen and E2 deprivation in vitro. The analysis of the barcodes complexity in resistant clones revealed cell line-specific and treatment-specific mechanisms of resistance development. The distinct barcodes composition also reflected different signaling pathways activities that indicate specific paths to resistance for the independent replicates. Overall this study elucidates key features of endocrine resistance both through the identification of ATF3 as a novel mediator of endocrine resistance and through the dissection of the mechanisms underlying the selection/adaptation of independent replicates to the endocrine treatments

    Serum extracellular vesicles profiling is associated with COVID-19 progression and immune responses

    Full text link
    Coronavirus disease 2019 (COVID-19) has transformed very quickly into a world pandemic with severe and unexpected consequences on human health. Concerted efforts to generate better diagnostic and prognostic tools have been ongoing. Research, thus far, has primarily focused on the virus itself or the direct immune response to it. Here, we propose extracellular vesicles (EVs) from serum liquid biopsies as a new and unique modality to unify diagnostic and prognostic tools for COVID-19 analyses. EVs are a novel player in intercellular signalling particularly influencing immune responses. We herein show that innate and adaptive immune EVs profiling, together with SARS-CoV-2 Spike S1+^{+} EVs provide a novel signature for SARS-CoV-2 infection. It also provides a unique ability to associate the co-existence of viral and host cell signatures to monitor affected tissues and severity of the disease progression. And provide a phenotypic insight into COVID-associated EVs

    Modular cytosine base editing promotes epigenomic and genomic modifications

    Get PDF
    Prokaryotic and eukaryotic adaptive immunity differ considerably. Yet, their fundamental mechanisms of gene editing via Cas9 and activation-induced deaminase (AID), respectively, can be conveniently complimentary. Cas9 is an RNA targeted dual nuclease expressed in several bacterial species. AID is a cytosine deaminase expressed in germinal centre B cells to mediate genomic antibody diversification. AID can also mediate epigenomic reprogramming via active DNA demethylation. It is known that sequence motifs, nucleic acid structures, and associated co-factors affect AID activity. But despite repeated attempts, deciphering AID’s intrinsic catalytic activities and harnessing its targeted recruitment to DNA is still intractable. Even recent cytosine base editors are unable to fully recapitulate AID’s genomic and epigenomic editing properties. Here, we describe the first instance of a modular AID-based editor that recapitulates the full spectrum of genomic and epigenomic editing activity. Our ‘Swiss army knife’ toolbox will help better understand AID biology per se as well as improve targeted genomic and epigenomic editing

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    Time-Resolved Profiling Reveals ATF3 as a Novel Mediator of Endocrine Resistance in Breast Cancer

    No full text
    Breast cancer is one of the leading causes of death for women worldwide. Patients whose tumors express Estrogen Receptor α account for around 70% of cases and are mostly treated with targeted endocrine therapy. However, depending on the degree of severity of the disease at diagnosis, 10 to 40% of these tumors eventually relapse due to resistance development. Even though recent novel approaches as the combination with CDK4/6 inhibitors increased the overall survival of relapsing patients, this remains relatively short and there is a urgent need to find alternative targetable pathways. In this study we profiled the early phases of the resistance development process to uncover drivers of this phenomenon. Time-resolved analysis revealed that ATF3, a member of the ATF/CREB family of transcription factors, acts as a novel regulator of the response to therapy via rewiring of central signaling processes towards the adaptation to endocrine treatment. ATF3 was found to be essential in controlling crucial processes such as proliferation, cell cycle, and apoptosis during the early response to treatment through the regulation of MAPK/AKT signaling pathways. Its essential role was confirmed in vivo in a mouse model, and elevated expression of ATF3 was verified in patient datasets, adding clinical relevance to our findings. This study proposes ATF3 as a novel mediator of endocrine resistance development in breast cancer and elucidates its role in the regulation of downstream pathways activities

    Extracellular Vesicles Orchestrate Immune and Tumor Interaction Networks

    Get PDF
    Extracellular vesicles (EVs) are emerging as potent and intricate intercellular communication networks. From their first discovery almost forty years ago, several studies have bolstered our understanding of these nano-vesicular structures. EV subpopulations are now characterized by differences in size, surface markers, cargo, and biological effects. Studies have highlighted the importance of EVs in biology and intercellular communication, particularly during immune and tumor interactions. These responses can be equally mediated at the proteomic and epigenomic levels through surface markers or nucleic acid cargo signaling, respectively. Following the exponential growth of EV studies in recent years, we herein synthesize new aspects of the emerging immune-tumor EV-based intercellular communications. We also discuss the potential role of EVs in fundamental immunological processes under physiological conditions, viral infections, and tumorigenic conditions. Finally, we provide insights on the future prospects of immune-tumor EVs and suggest potential avenues for the use of EVs in diagnostics and therapeutics

    Serum extracellular vesicles profiling is associated with COVID‐19 progression and immune responses

    No full text
    Abstract Coronavirus disease 2019 (COVID‐19) has transformed very quickly into a world pandemic with severe and unexpected consequences on human health. Concerted efforts to generate better diagnostic and prognostic tools have been ongoing. Research, thus far, has primarily focused on the virus itself or the direct immune response to it. Here, we propose extracellular vesicles (EVs) from serum liquid biopsies as a new and unique modality to unify diagnostic and prognostic tools for COVID‐19 analyses. EVs are a novel player in intercellular signalling particularly influencing immune responses. We herein show that innate and adaptive immune EVs profiling, together with SARS‐CoV‐2 Spike S1+ EVs provide a novel signature for SARS‐CoV‐2 infection. It also provides a unique ability to associate the co‐existence of viral and host cell signatures to monitor affected tissues and severity of the disease progression. And provide a phenotypic insight into COVID‐associated EVs
    corecore