25 research outputs found

    Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Get PDF
    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock

    Assessment of the state of the art in life support environmental control for SEI

    Get PDF
    This paper defines the types of technology that would be used in a lunar base for environmental control and life support system and how it might relate to in situ materials utilization (ISMU) for the Space Exploration Initiative (SEI). There are three types of interaction between ISMU and the Environmental Control and Life Support System (ECLSS): (1) ISMU can reduce cost of water, oxygen, and possibly diluent gasses provided to ECLSS--a corollary to this fact is that the availability of indigenous resources can dramatically alter life support technology trade studies; (2) ISMU can use ECLSS waste systems as a source of reductant carbon and hydrogen; and (3) ECLSS and ISMU, as two chemical processing technologies used in spacecraft, can share technology, thereby increasing the impact of technology investments in either area

    Predicting Numbers of Problems in Development of Software

    Get PDF
    A method has been formulated to enable prediction of the amount of work that remains to be performed in developing flight software for a spacecraft. The basic concept embodied in the method is that of using an idealized curve (specifically, the Weibull function) to interpolate from (1) the numbers of problems discovered thus far to (2) a goal of discovering no new problems after launch (or six months into the future for software already in use in orbit). The steps of the method can be summarized as follows: 1. Take raw data in the form of problem reports (PRs), including the dates on which they are generated. 2. Remove, from the data collection, PRs that are subsequently withdrawn or to which no response is required. 3. Count the numbers of PRs created in 1-week periods and the running total number of PRs each week. 4. Perform the interpolation by making a least-squares fit of the Weibull function to (a) the cumulative distribution of PRs gathered thus far and (b) the goal of no more PRs after the currently anticipated launch date. The interpolation and the anticipated launch date are subject to iterative re-estimation

    Lunar base launch and landing facilities conceptual design

    Get PDF
    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established

    Space transportation nodes assumptions and requirements: Lunar base systems study task 2.1

    Get PDF
    The Space Transportation Nodes Assumptions and Requirements task was performed as part of the Advanced Space Transportation Support Contract, a NASA Johnson Space Center (JSC) study intended to provide planning for a Lunar Base near the year 2000. The original task statement has been revised to satisfy the following queries: (1) What vehicles are to be processed at the transportation node; (2) What is the flow of activities involved in a vehicle passing through the node; and (3) What node support resources are necessary to support a lunar scenario traffic model composed of a mix of vehicles in an active flight schedule. The Lunar Base Systems Study is concentrating on the initial years of the Phase 2 Lunar Base Scenario. The study will develop the first five years of that phase in order to define the transportation and surface systems (including mass, volumes, power requirements, and designs)

    Lunar highland rock types : their implications for impact-induced fractionation

    Get PDF
    Lunar rocks may be classified into three major groups: (1) coarse-grained igneous rocks, (2) fine-grained igneous rocks, and (3) breccias. Group 1 is interpreted as primitive lunar crustal rocks that display various degrees of crushing and/or annealing. Group 2 is interpreted as volcanic rocks. Group 3 is interpreted as resulting from impacts on the lunar surface and is subdivided on the basis of matrix textures into fragmental breccias, crystalline breccias that have been annealed, and crystalline breccias with igneous matrices. A synthesis of the data concerning lunar highlands polymict breccias compels the prediction that the breccias should have homogeneous matrices from rock to rock within regions of the highlands of limited size where impact mixing has been efficient and extensive. But the returned breccias, even from one landing site, display a wide range in composition. This incompatibility between prediction and observation is a paradox that may be resolved by a process that acts after impact mixing to cause a differentiation of the breccia compositions. Partial melting of the local average crustal composition (as modeled by the average soil composition for each site) and separation of melt and residue in ejecta and/or fall-back blankets are compatible with the reviewed data and may resolve the paradox.W. C. Phinney and J. L. Warner, NASA/ Johnson Space Center, Houston, Texas, C. H. Simonds, Lunar Science Institute, Houston, Texa

    Lunar igneous rocks

    Get PDF
    Basic petrographic, chemical, and age data is presented for a representative suite of igneous rocks gathered during the six Apollo missions. Tables are given for 69 samples: 32 igneous rocks and 37 impactites (breccias). A description is given of 26 basalts, four plutonic rocks, and two pyroclastic samples. The textural-mineralogic name assigned each sample is included.by Patricia McGee, Jeffrey L. Warner, and Charles H. SimondsIntroduction--Description of the igneous rocks--Table of geochemistry--Master reference list

    Transmission of Human Immunodeficiency Virus Type 1 from a Seronegative Organ and Tissue Donor

    Get PDF
    Abstract BACKGROUND Since 1985, donors of organs or tissues for transplantation in the United States have been screened for human immunodeficiency virus type 1 (HIV-1), and more than 60,000 organs and 1 million tissues have been transplanted. We describe a case of transmission of HIV-1 by transplantation of organs and tissues procured between the time the donor became infected and the appearance of antibodies. The donor was a 22-year-old man who died 32 hours after a gunshot wound; he had no known risk factors for HIV-1 infection and was seronegative. METHODS We reviewed the processing and distribution of all the transplanted organs and tissues, reviewed the medical histories of the donor and HIV-1—infected recipients, tested stored donor lymphocytes for HIV-1 by viral culture and the polymerase chain reaction, and tested stored serum samples from four organ recipients for HIV-1 antigen and antibody. RESULTS HIV-1 was detected in cultured lymphocytes from the donor. Of 58 tissues and organs obtained from the donor, 52 could be accounted for by the hospitals that received them. Of the 48 identified recipients, 41 were tested for HIV-1 antibody. All four recipients of organs and all three recipients of unprocessed fresh-frozen bone were infected with HIV-1. However, 34 recipients of other tissues — 2 receiving corneas, 3 receiving lyophilized soft tissue, 25 receiving ethanol-treated bone, 3 receiving dura mater treated with gamma radiation, and 1 receiving marrow-evacuated, fresh-frozen bone — tested negative for HIV-1 antibody. Despite immunosuppressive chemotherapy, HIV-1 antibody appeared between 26 and 54 days after transplantation in the three organ recipients who survived more than 4 weeks. CONCLUSIONS Although rare, transmission of HIV-1 by seronegative organ and tissue donors can occur. Improvements in the methods used to screen donors for HIV-1, advances in techniques of virus inactivation, prompt reporting of HIV infection in recipients, and accurate accounting of distributed allografts would help to reduce further this already exceedingly low risk. (N Engl J Med 1992;326:726–32.
    corecore