43 research outputs found

    Combining geometric edge detectors for feature detection

    Get PDF
    We propose a novel framework for the analysis and modeling of discrete edge filters, based on the notion of signed rays. This framework will allow us to easily deduce the geometric and localization properties of a family of first-order filters, and use this information to design custom filter banks for specific applications. As an example, a set of angle-selective corner detectors is constructed for the detection of buildings in video sequences. This clearly illustrates the merit of the theory for solving practical recognition problems

    Transformation Equivariant Boltzmann Machines

    Get PDF
    Abstract. We develop a novel modeling framework for Boltzmann machines, augmenting each hidden unit with a latent transformation assignment variable which describes the selection of the transformed view of the canonical connection weights associated with the unit. This enables the inferences of the model to transform in response to transformed input data in a stable and predictable way, and avoids learning multiple features differing only with respect to the set of transformations. Extending prior work on translation equivariant (convolutional) models, we develop translation and rotation equivariant restricted Boltzmann machines (RBMs) and deep belief nets (DBNs), and demonstrate their effectiveness in learning frequently occurring statistical structure from artificial and natural images

    Action Recognition with a Bio--Inspired Feedforward Motion Processing Model: The Richness of Center-Surround Interactions

    Get PDF
    International audienceHere we show that reproducing the functional properties of MT cells with various center--surround interactions enriches motion representation and improves the action recognition performance. To do so, we propose a simplified bio--inspired model of the motion pathway in primates: It is a feedforward model restricted to V1-MT cortical layers, cortical cells cover the visual space with a foveated structure, and more importantly, we reproduce some of the richness of center-surround interactions of MT cells. Interestingly, as observed in neurophysiology, our MT cells not only behave like simple velocity detectors, but also respond to several kinds of motion contrasts. Results show that this diversity of motion representation at the MT level is a major advantage for an action recognition task. Defining motion maps as our feature vectors, we used a standard classification method on the Weizmann database: We obtained an average recognition rate of 98.9%, which is superior to the recent results by Jhuang et al. (2007). These promising results encourage us to further develop bio--inspired models incorporating other brain mechanisms and cortical layers in order to deal with more complex videos

    Differentiation of Discrete Multidimensional Signals

    No full text

    Image compression via joint statistical characterization in the wavelet domain

    No full text

    Image Quality Assessment: From Error Visibility to Structural Similarity

    No full text

    Correlation Computations for Movement Detection in Neural Networks

    No full text

    Dynamic Pursuit with a Bio-inspired Neural Model

    No full text

    Dynamic pursuit with a bio-inspired neural model

    No full text
    In this paper we present a bio-inspired connectionist model for visual perception of motion and its pursuit. It is organized in three stages: a causal spatio-temporal filtering of Gabor-like type, an antagonist inhibition mechanism and a densely interconnected neural population. These stages are inspired by the neural treatment and the interactions of the primary visual cortex, middle temporal area and superior visual areas. This model has been evaluated on natural image sequences
    corecore