457 research outputs found
Synchronization in Complex Systems Following the Decision Based Queuing Process: The Rhythmic Applause as a Test Case
Living communities can be considered as complex systems, thus a fertile
ground for studies related to their statistics and dynamics. In this study we
revisit the case of the rhythmic applause by utilizing the model proposed by
V\'azquez et al. [A. V\'azquez et al., Phys. Rev. E 73, 036127 (2006)]
augmented with two contradicted {\it driving forces}, namely: {\it
Individuality} and {\it Companionship}. To that extend, after performing
computer simulations with a large number of oscillators we propose an
explanation on the following open questions (a) why synchronization occurs
suddenly, and b) why synchronization is observed when the clapping period
() is ( is the mean self period
of the spectators) and is lost after a time. Moreover, based on the model, a
weak preferential attachment principle is proposed which can produce complex
networks obeying power law in the distribution of number edges per node with
exponent greater than 3.Comment: 16 pages, 5 figure
The Conditional Lucas & Kanade Algorithm
The Lucas & Kanade (LK) algorithm is the method of choice for efficient dense
image and object alignment. The approach is efficient as it attempts to model
the connection between appearance and geometric displacement through a linear
relationship that assumes independence across pixel coordinates. A drawback of
the approach, however, is its generative nature. Specifically, its performance
is tightly coupled with how well the linear model can synthesize appearance
from geometric displacement, even though the alignment task itself is
associated with the inverse problem. In this paper, we present a new approach,
referred to as the Conditional LK algorithm, which: (i) directly learns linear
models that predict geometric displacement as a function of appearance, and
(ii) employs a novel strategy for ensuring that the generative pixel
independence assumption can still be taken advantage of. We demonstrate that
our approach exhibits superior performance to classical generative forms of the
LK algorithm. Furthermore, we demonstrate its comparable performance to
state-of-the-art methods such as the Supervised Descent Method with
substantially less training examples, as well as the unique ability to "swap"
geometric warp functions without having to retrain from scratch. Finally, from
a theoretical perspective, our approach hints at possible redundancies that
exist in current state-of-the-art methods for alignment that could be leveraged
in vision systems of the future.Comment: 17 pages, 11 figure
A point process framework for modeling electrical stimulation of the auditory nerve
Model-based studies of auditory nerve responses to electrical stimulation can
provide insight into the functioning of cochlear implants. Ideally, these
studies can identify limitations in sound processing strategies and lead to
improved methods for providing sound information to cochlear implant users. To
accomplish this, models must accurately describe auditory nerve spiking while
avoiding excessive complexity that would preclude large-scale simulations of
populations of auditory nerve fibers and obscure insight into the mechanisms
that influence neural encoding of sound information. In this spirit, we develop
a point process model of the auditory nerve that provides a compact and
accurate description of neural responses to electric stimulation. Inspired by
the framework of generalized linear models, the proposed model consists of a
cascade of linear and nonlinear stages. We show how each of these stages can be
associated with biophysical mechanisms and related to models of neuronal
dynamics. Moreover, we derive a semi-analytical procedure that uniquely
determines each parameter in the model on the basis of fundamental statistics
from recordings of single fiber responses to electric stimulation, including
threshold, relative spread, jitter, and chronaxie. The model also accounts for
refractory and summation effects that influence the responses of auditory nerve
fibers to high pulse rate stimulation. Throughout, we compare model predictions
to published physiological data and explain differences in auditory nerve
responses to high and low pulse rate stimulation. We close by performing an
ideal observer analysis of simulated spike trains in response to sinusoidally
amplitude modulated stimuli and find that carrier pulse rate does not affect
modulation detection thresholds.Comment: 1 title page, 27 manuscript pages, 14 figures, 1 table, 1 appendi
Phase-based video motion processing
We introduce a technique to manipulate small movements in videos based on an analysis of motion in complex-valued image pyramids. Phase variations of the coefficients of a complex-valued steerable pyramid over time correspond to motion, and can be temporally processed and amplified to reveal imperceptible motions, or attenuated to remove distracting changes. This processing does not involve the computation of optical flow, and in comparison to the previous Eulerian Video Magnification method it supports larger amplification factors and is significantly less sensitive to noise. These improved capabilities broaden the set of applications for motion processing in videos. We demonstrate the advantages of this approach on synthetic and natural video sequences, and explore applications in scientific analysis, visualization and video enhancement.Shell ResearchUnited States. Defense Advanced Research Projects Agency. Soldier Centric Imaging via Computational CamerasNational Science Foundation (U.S.) (CGV-1111415)Cognex CorporationMicrosoft Research (PhD Fellowship)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi
Quantitative single molecule analysis of podoplanin clustering in fibroblastic reticular cells uncovers CD44 function
Upon initial immune challenge, dendritic cells (DCs) migrate to lymph nodes and interact with fibroblastic reticular cells (FRCs) via C-type lectin-like receptor 2 (CLEC-2). CLEC-2 binds to the membrane glycoprotein podoplanin (PDPN) on FRCs, inhibiting actomyosin contractility through the FRC network and permitting lymph node expansion. The hyaluronic acid receptor CD44 is known to be required for FRCs to respond to DCs but the mechanism of action is not fully elucidated. Here, we use DNA-PAINT, a quantitative single molecule super-resolution technique, to visualize and quantify how PDPN clustering is regulated in the plasma membrane of FRCs. Our results indicate that CLEC-2 interaction leads to the formation of large PDPN clusters (i.e. more than 12 proteins per cluster) in a CD44-dependent manner. These results suggest that CD44 expression is required to stabilize large pools of PDPN at the membrane of FRCs upon CLEC-2 interaction, revealing the molecular mechanism through which CD44 facilitates cellular crosstalk between FRCs and DCs
Perioperative outcome, long-term mortality and time trends in elderly patients undergoing low-, intermediate- or major non-cardiac surgery
Background: Decision-making whether older patients benefit from surgery can be a difficult task. This report investigates characteristics and outcomes of a large cohort of inpatients, aged 80 years and over, undergoing non-cardiac surgery. Methods: This observational study was performed at a tertiary university medical centre in the Netherlands. Patients of 80 years or older undergoing elective or urgent surgery from January 2004 to June 2017 were included. Outcomes were length of stay, discharge destination, 30-day and long-term mortality. Patients were divided into low-, intermediate and high-risk surgery subgroups. Univariable and multivariable logistic regression were used to evaluate the association of risk factors and outcomes. Secondary outcomes were time trends, assessed with Mantel–Haenszel chi-square test. Results: Data of 8251 patients, undergoing 19,027 surgical interventions were collected from the patients’ medical record. 7032 primary procedures were suitable for analyses. Median LOS was 3 days in the low-risk group, compared to six in the intermediate- and ten in the high-risk group. Median LOS of the total cohort decreased from 5.8 days (IQR 1.9–14.5) in 2004–2007 to 4.6 days (IQR 1.9–9.0) in 2016–2017. Three quarters of patients were discharged to their home. Postoperative 30-day mortality in the low-risk group was 2.3%. In the overall population 30-day mortality was high and constant during the study period (6.7%, ranging from 4.2 to 8.4%). Conclusion:Patients should not be withheld surgery solely based on their age. However, even for low-risk surgery, the mortality rate of more than 2% is substantial. Deciding whether older patients benefit from surgery should be based on the understanding of individual risks, patients’ wishes and a patient-centred plan.</p
Carfilzomib plus dexamethasone in patients with relapsed and refractory multiple myeloma: A retro-prospective observational study
Objective: We investigate safety and efficacy in common clinical practice of the combination of carfilzomib and dexamethasone (Kd56) approved for the ENDEAVOR trial for the treatment of relapsed or refractory multiple myeloma. Methods: We retro-prospective analyzed 75 patients in three centers in Tuscany, 48 of whom had a clinically relevant comorbidity and 50 of whom were older than 65 years, treated with a median use in the fourth line of therapy. We assessed the efficacy based on the International Myeloma Working Group criteria. Results: The overall response rate was 60%. Median PFS was 10 months in the general cohort; in patients treated for more than 1 cycle of therapy PFS was 12 months. Quality of response to Kd56 treatment was found to positively impact PFS. Refractory status to previous line of therapy or to lenalidomide or an history of exposure to pomalidomide, seemed to have no impact on survival. We also showed a low adverse events rate, with no neuropathy events, and a relatively small number of cardiovascular events above grade 3 (10%). Conclusion: Kd56 is an effective and well tolerated regimen in highly pretreated and elderly patients with a good safety profile
VCL@FER– baza slika za procjenu kvalitete slike
Original scientific paper In this paper we present new image quality database VCL@FER (http://www.vcl.fer.hr/quality/) which consists of four degradation types, 6 levels of each degradation and 23 different images (552 degraded images). It can be used in objective image quality evaluation, as well as to develop and test new image quality measures. Results for
six commonly used full reference objective quality measures are compared using newly developed image database, as well as 6 other image databases.VCL@FER baza slika nova je baza slika (http://www.vcl.fer.hr/quality/) koja se sastoji od 4 vrste izobličenja, 6 razina svakog izobličenja i 23 različite slike (ukupno 552 izobličene slike). Baza slika može se koristiti za usporedbu različitih objektivnih mjera kvalitete slike, kao i za razvoj novih objektivnih mjera. Uporabom nove baze te još šest dostupnih baza slika provedena je usporedba šest relevantnih objektivnih mjere kvalitete slike
Plasma-activated medium as an innovative anticancer strategy: Insight into its cellular and molecular impact on in vitro leukemia cells
Cold atmospheric plasma (CAP) has received attention as a potential anticancer strategy. In this study, culture medium was exposed to a microsecond-pulsed dielectric barrier discharge jet to produce plasma-activated medium (PAM). On the T-lymphoblastic cell line, PAM induced apoptosis through the activation of the intrinsic pathway and inhibited the cell-cycle progression. The use of the scavengers N-acetylcysteine or O-phenantroline significantly decreased the PAM proapoptotic activity. The genetic impact of PAM on TK6 cells was assessed, resulting in an increased micronuclei frequency. PAM exhibited cytotoxic effects even on leukemia cells cultivated in hypoxia, which plays a critical role in promoting chemoresistance. PAM was also tested on normal lymphocytes, showing its partial selectivity. Taken together, these results contribute to understand the pharmacotoxicological profile of CAP
CubeNet: Equivariance to 3D Rotation and Translation
3D Convolutional Neural Networks are sensitive to transformations applied to
their input. This is a problem because a voxelized version of a 3D object, and
its rotated clone, will look unrelated to each other after passing through to
the last layer of a network. Instead, an idealized model would preserve a
meaningful representation of the voxelized object, while explaining the
pose-difference between the two inputs. An equivariant representation vector
has two components: the invariant identity part, and a discernable encoding of
the transformation. Models that can't explain pose-differences risk "diluting"
the representation, in pursuit of optimizing a classification or regression
loss function.
We introduce a Group Convolutional Neural Network with linear equivariance to
translations and right angle rotations in three dimensions. We call this
network CubeNet, reflecting its cube-like symmetry. By construction, this
network helps preserve a 3D shape's global and local signature, as it is
transformed through successive layers. We apply this network to a variety of 3D
inference problems, achieving state-of-the-art on the ModelNet10 classification
challenge, and comparable performance on the ISBI 2012 Connectome Segmentation
Benchmark. To the best of our knowledge, this is the first 3D rotation
equivariant CNN for voxel representations.Comment: Preprin
- …