The Lucas & Kanade (LK) algorithm is the method of choice for efficient dense
image and object alignment. The approach is efficient as it attempts to model
the connection between appearance and geometric displacement through a linear
relationship that assumes independence across pixel coordinates. A drawback of
the approach, however, is its generative nature. Specifically, its performance
is tightly coupled with how well the linear model can synthesize appearance
from geometric displacement, even though the alignment task itself is
associated with the inverse problem. In this paper, we present a new approach,
referred to as the Conditional LK algorithm, which: (i) directly learns linear
models that predict geometric displacement as a function of appearance, and
(ii) employs a novel strategy for ensuring that the generative pixel
independence assumption can still be taken advantage of. We demonstrate that
our approach exhibits superior performance to classical generative forms of the
LK algorithm. Furthermore, we demonstrate its comparable performance to
state-of-the-art methods such as the Supervised Descent Method with
substantially less training examples, as well as the unique ability to "swap"
geometric warp functions without having to retrain from scratch. Finally, from
a theoretical perspective, our approach hints at possible redundancies that
exist in current state-of-the-art methods for alignment that could be leveraged
in vision systems of the future.Comment: 17 pages, 11 figure