18 research outputs found
Phase transition and dynamics of defects in the molecular piezoelectric TMCM-MnCl3 and the effect of partial substitutions of Mn
We present dielectric and anelastic spectroscopy measurements of the molecular piezoelectric TMCM-MnCl3 and TMCM-Mn0.95M0.05Cl3 (M = Cu, Fe, Ni; TMCM = trimethylchlorometylammonium), whose powders were pressed into discs and bars and deposited as films on Si by Matrix-Assisted Pulsed Laser Evaporation (MAPLE). As in other molecular ferroelectrics, the dielectric permittivity e0 drops at the structural transition temperature TC, below which the number of directions that the polar TMCM molecules visit is reduced, with the formation of ferroelectric domains. Concomitantly, the Young’s modulus E starts increasing and the elastic energy loss has a step-like increase, attributable to the motion of the domain walls. Both the dielectric and elastic anomalies indicate the improper character of the ferroelectric transition, where the ordering of the molecular orientations is not driven by the cooperative interaction of their electric dipoles. Below room temperature, at least two thermally activated relaxation processes appear both in the dielectric and anelastic spectra, whose real and imaginary parts measured at several frequencies can be fit with the Havriliak–Negami formula. The microscopic parameters so-obtained indicate that they are due to point defects, and it is argued that they are Cl vacancies and their complexes with TMCM vacancies.
The considerable width of these relaxation maxima is explained by the geometry of the hexagonal perovskite structure. The partial substitution of Mn with 5% Ni has little effect on the anelastic and dielectric spectra, while Cu and, especially, Fe cause a large enhancement of the losses attributed to domain wall relaxation, with substantial contributions also above TC. The condensation of water from the humidity in the powders compacted by cold pressing was observed and discussed. The piezoelectric activity of the films was assessed by PFM
Smart Thermoresponsive Surfaces Based on pNIPAm Coatings and Laser Method for Biological Applications
Various applications within last decades such as bacterially resistant surfaces, soft robotics, drug delivery systems, sensors and tissue engineering are poised to feature the importance of the ability to control bio-interfacial interactions. An enhanced attention is dedicated to designing smart stimuli-responsive interfaces for DNA, drug delivery, protein and cell based applications. Within this context, the thermoresponsive materials, especially poly(N-isopropylacrylamide) (pNIPAm) have been intensively used in tissue engineering applications for a controlled detachment of proteins and cells with a minimum of invasive effect on protein and cell structural conformation. The properties of smart bio-interfaces can be controlled by its composition and polymer architecture. Therefore, appropriate methods for obtaining controlled coatings are necessary. Laser methods were successfully used in the last decades for obtaining controlled organic and inorganic coatings for various types of applications, from electronics to tissue engineering. Among these, Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique bring us a step forward to other laser methods by avoiding damage and photochemical decomposition of materials. In this chapter we describe materials and approaches used for design of smart bio-interfaces aimed at controlling protein and cells behavior in vitro, focusing MAPLE method for tuning coatings characteristics in relation with biological response
Atmospheric pressure plasma deposition of organosilicon thin films by direct current and radio-frequency plasma jets
Thin film deposition with atmospheric pressure plasmas is highly interesting for industrial demands and scientific interests in the field of biomaterials. However, the engineering of high-quality films by high-pressure plasmas with precise control over morphology and surface chemistry still poses a challenge. The two types of atmospheric-pressure plasma depositions of organosilicon films by the direct and indirect injection of hexamethyldisiloxane (HMDSO) precursor into a plasma region were chosen and compared in terms of the films chemical composition and morphology to address this. Although different methods of plasma excitation were used, the deposition of inorganic films with above 98% of SiO2 content was achieved for both cases. The chemical structure of the films was insignificantly dependent on the substrate type. The deposition in the afterglow of the DC discharge resulted in a soft film with high roughness, whereas RF plasma deposition led to a smoother film. In the case of the RF plasma deposition on polymeric materials resulted in films with delamination and cracks formation. Lastly, despite some material limitations, both deposition methods demonstrated significant potential for SiOx thin-films preparation for a variety of bio-related substrates, including glass, ceramics, metals, and polymers.This research was funded by EU H2020 M.Era-Net “PlasmaTex” project. Funding of the Romanian team was insured by the Romanian Ministry of Research and Innovation under the contract 31/2016/UEFISCDI. This work was funded by the Portuguese Foundation for Science and Technology FCT/MCTES (PIDDAC) and co-financed by European funds (FEDER) through the PT2020 program, research project M-ERA-NET/0006/2014. Slovenian team research was funded through the Ministry of Education, Science and Sport and Slovenian Research Agency (ARRS)
Graphene nanoplatelets-sericin surface-modified Gum alloy for improved biological response
In this study a “Gum Metal” titanium-based alloy, Ti-31.7Nb-6.21Zr-1.4Fe-0.16O, was synthesized by melting and characterized in order to evaluate its potential for biomedical applications. The results showed that the newly developed alloy presents a very high strength, high plasticity and a low Young\u27s modulus relative to titanium alloys currently used in medicine. For further bone implant applications, the newly synthesized alloy was surface modified with graphene nanoplatelets (GNP), sericin (SS) and graphene nanoplatelets/sericine (GNP–SS) composite films via Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The characterization of each specimen was monitored by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA) measurements, and Fourier Transform Infrared Spectroscopy (FTIR). The materials\u27 surface analyses suggested the successful coating of GNP, SS and GNP–SS onto the alloy surface. Additionally, the activities of pre-osteoblasts such as cell adhesion, cytoskeleton organization, cell proliferation and differentiation potentials exhibited on these substrates were investigated. Results showed that the GNP–SS-coated substrate significantly enhanced the growth and osteogenic differentiation of MC3T3-E1 cells when compared to bare and GNP-coated alloy. Collectively, the results show that GNP–SS surface-modified Gum alloy can modulate the bioactivity of the pre-osteoblasts holding promise for improved biological response in vivo
Shellac Thin Films Obtained by Matrix-Assisted Pulsed Laser Evaporation (MAPLE)
We report on the fabrication of shellac thin films on silicon substrates by matrix-assisted pulsed laser evaporation (MAPLE) using methanol as matrix. Very adherent, dense, and smooth films were obtained by MAPLE with optimized deposition parameters, such as laser wavelength and laser fluence. Films with a root mean square (RMS) roughness of 11 nm measured on 40 × 40 µm2 were obtained for a 2000-nm-thick shellac film deposited with 0.6 J/cm2 fluence at a laser wavelength of 266 nm. The MAPLE films were tested in simulated gastric fluid in order to assess their capabilities as an enteric coating. The chemical, morphological, and optical properties of shellac samples were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM)
Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats
We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications
Second harmonic generation (SHG) in pentacene thin films grown by matrix assisted pulsed laser evaporation (MAPLE)
International audienc
Nitrites Detection with Sensors Processed via Matrix-Assisted Pulsed Laser Evaporation
This work is focused on the application of a laser-based technique, i.e., matrix-assisted pulsed laser evaporation (MAPLE) for the development of electrochemical sensors aimed at the detection of nitrites in water. Commercial carbon-based screen-printed electrodes were modified by MAPLE via the application of a newly developed composite coating with different concentrations of carbon nanotubes (CNTs), chitosan, and iron (II) phthalocyanine (C32H16FeN8). The performance of the newly fabricated composite coatings was evaluated both by investigating the morphology and surface chemistry of the coating, and by determining the electro-catalytic oxidation properties of nitrite with bare and modified commercial carbon-based screen-printed electrode. It was found that the combined effect of CNTs with chitosan and C32H16FeN8 significantly improves the electrochemical response towards the oxidation of nitrite. In addition, the MAPLE modified screen-printed electrodes have a limit of detection of 0.12 µM, which make them extremely useful for the detection of nitrite traces
Shaping in the Third Direction; Synthesis of Patterned Colloidal Crystals by Polyester Fabric-Guided Self-Assembly
A polyester fabric with rectangular openings was used as a sacrificial template for the guiding of a sub-micron sphere (polystyrene (PS) and silica) aqueous colloid self-assembly process during evaporation as a patterned colloidal crystal (PCC). This simple process is also a robust one, being less sensitive to external parameters (ambient pressure, temperature, humidity, vibrations). The most interesting feature of the concave-shape-pattern unit cell (350 μm × 400 μm × 3 μm) of this crystal is the presence of triangular prisms at its border, each prism having a one-dimensional sphere array at its top edge. The high-quality ordered single layer found inside of each unit cell presents the super-prism effect and left-handed behavior. Wider yet elongated deposits with ordered walls and disordered top surfaces were formed under the fabric knots. Rectangular patterning was obtained even for 20 μm PS spheres. Polyester fabrics with other opening geometries and sizes (~300–1000 μm) or with higher fiber elasticity also allowed the formation of similar PCCs, some having curved prismatic walls. A higher colloid concentration (10–20%) induces the formation of thicker walls with fiber-negative replica morphology. Additionally, thick-wall PCCs (~100 μm) with semi-cylindrical morphology were obtained using SiO2 sub-microspheres and a wavy fabric. The colloidal pattern was used as a lithographic mask for natural lithography and as a template for the synthesis of triangular-prism-shaped inverted opals