56,835 research outputs found

    The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory

    Get PDF
    The mergers of supermassive black hole binaries (SMBHBs) promise to be incredible sources of gravitational waves (GWs). While the oscillatory part of the merger gravitational waveform will be outside the frequency sensitivity range of pulsar timing arrays, the nonoscillatory GW memory effect is detectable. Further, any burst of GWs will produce GW memory, making memory a useful probe of unmodeled exotic sources and new physics. We searched the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11 yr data set for GW memory. This data set is sensitive to very low-frequency GWs of ~3 to 400 nHz (periods of ~11 yr–1 month). Finding no evidence for GWs, we placed limits on the strain amplitude of GW memory events during the observation period. We then used the strain upper limits to place limits on the rate of GW memory causing events. At a strain of 2.5 × 10⁻¹⁴, corresponding to the median upper limit as a function of source sky position, we set a limit on the rate of GW memory events at <0.4 yr⁻¹. That strain corresponds to an SMBHB merger with reduced mass of ηM ~ 2 × 10¹⁰ M_⊙ and inclination of ι = π/3 at a distance of 1 Gpc. As a test of our analysis, we analyzed the NANOGrav 9 yr data set as well. This analysis found an anomolous signal, which does not appear in the 11 yr data set. This signal is not a GW, and its origin remains unknown

    Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    Get PDF
    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68% and 2.0% free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows

    Free-stream turbulence and concave curvature effects on heated, transitional boundary layers, volume 1

    Get PDF
    An experimental investigation of the transition process on flat-plate and concave curved-wall boundary layers for various free-streem turbulence levels was performed. Where possible, sampling according to the intermittency function was made. Such sampling allowed segregation of the signal into two types of behavior: laminar-like and turbulent-like. The results from the investigation are discussed. Documentation is presented in two volumes. Volume one contains the text of the report including figures and supporting appendices. Volume two contains data reduction program listings and tabulated data

    UK Foot and Mouth disease: a systemic risk assessment of existing controls

    Get PDF
    This article details a systemic analysis of the controls in place and possible interventions available to further reduce the risk of a foot and mouth disease (FMD) outbreak in the United Kingdom. Using a research-based network analysis tool, we identify vulnerabilities within the multibarrier control system and their corresponding critical control points (CCPs). CCPs represent opportunities for active intervention that produce the greatest improvement to United Kingdom's resilience to future FMD outbreaks. Using an adapted ‘features, events, and processes’ (FEPs) methodology and network analysis, our results suggest that movements of animals and goods associated with legal activities significantly influence the system's behavior due to their higher frequency and ability to combine and create scenarios of exposure similar in origin to the U.K. FMD outbreaks of 1967/8 and 2001. The systemic risk assessment highlights areas outside of disease control that are relevant to disease spread. Further, it proves to be a powerful tool for demonstrating the need for implementing disease controls that have not previously been part of the system

    ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy

    Full text link
    We introduce Zurich Atmosphere Purge (ZAP), an approach to sky subtraction based on principal component analysis (PCA) that we have developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. Extensive testing shows that ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources. The method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations the method is generally applicable to many different science cases and should also be useful for other instrumentation. ZAP is available for download at http://muse-vlt.eu/science/tools.Comment: 12 pages, 7 figures, 1 table. Accepted to MNRA

    Simple trace criterion for classification of multilayers

    Full text link
    The action of any lossless multilayer is described by a transfer matrix that can be factorized in terms of three basic matrices. We introduce a simple trace criterion that classifies multilayers in three classes with properties closely related with one (and only one) of these three basic matrices.Comment: To be published in Optics Letter

    The non-Gaussianity of the cosmic shear likelihood - or: How odd is the Chandra Deep Field South?

    Full text link
    (abridged) We study the validity of the approximation of a Gaussian cosmic shear likelihood. We estimate the true likelihood for a fiducial cosmological model from a large set of ray-tracing simulations and investigate the impact of non-Gaussianity on cosmological parameter estimation. We investigate how odd the recently reported very low value of σ8\sigma_8 really is as derived from the \textit{Chandra} Deep Field South (CDFS) using cosmic shear by taking the non-Gaussianity of the likelihood into account as well as the possibility of biases coming from the way the CDFS was selected. We find that the cosmic shear likelihood is significantly non-Gaussian. This leads to both a shift of the maximum of the posterior distribution and a significantly smaller credible region compared to the Gaussian case. We re-analyse the CDFS cosmic shear data using the non-Gaussian likelihood. Assuming that the CDFS is a random pointing, we find σ8=0.680.16+0.09\sigma_8=0.68_{-0.16}^{+0.09} for fixed Ωm=0.25\Omega_{\rm m}=0.25. In a WMAP5-like cosmology, a value equal to or lower than this would be expected in 5\approx 5% of the times. Taking biases into account arising from the way the CDFS was selected, which we model as being dependent on the number of haloes in the CDFS, we obtain σ8=0.710.15+0.10\sigma_8 = 0.71^{+0.10}_{-0.15}. Combining the CDFS data with the parameter constraints from WMAP5 yields Ωm=0.260.02+0.03\Omega_{\rm m} = 0.26^{+0.03}_{-0.02} and σ8=0.790.03+0.04\sigma_8 = 0.79^{+0.04}_{-0.03} for a flat universe.Comment: 18 pages, 16 figures, accepted for publication in A&A; New Bayesian treatment of field selection bia
    corecore