25 research outputs found

    Age and growth rate estimations of the commercially fished gastropod Buccinum undatum

    Get PDF
    Calculating age and growth rate for the commercially important whelk, Buccinum undatum in the aid of fishery management has historically been undertaken using growth rings on the organic operculum. This is difficult due to their poor readability and confusion between two different sets of growth lines present. Recent work presented the calcium carbonate statolith as an alternative for age determination of B. undatum. Here we compare the use of statoliths and opercula, comparing their readability and creating growth curves for three distinct populations across the United Kingdom. Using these data, we also test the most appropriate growth equation to model this species. Lastly, we use oxygen isotope analysis of the shells to assign accurate ages to several individuals from each site. These data were used to test the accuracy of statolith and operculum ages. Statoliths, whilst more time consuming to process have improved clarity and accuracy compared with the opercula. This improved readability has highlighted that a Gompertz growth function should be used for populations of this species, when in past studies, von Bertalanffy is often used. Statoliths are a viable improvement to opercula when assessing B. undatum in the context of fishery monitoring and management

    Age and growth rate estimations of the commercially fished gastropod Buccinum undatum

    Get PDF
    Calculating age and growth rate for the commercially important whelk, Buccinum undatum in the aid of fishery management has historically been undertaken using growth rings on the organic operculum. This is difficult due to their poor readability and confusion between two different sets of growth lines present. Recent work presented the calcium carbonate statolith as an alternative for age determination of B. undatum. Here we compare the use of statoliths and opercula, comparing their readability and creating growth curves for three distinct populations across the United Kingdom. Using these data, we also test the most appropriate growth equation to model this species. Lastly, we use oxygen isotope analysis of the shells to assign accurate ages to several individuals from each site. These data were used to test the accuracy of statolith and operculum ages. Statoliths, whilst more time consuming to process have improved clarity and accuracy compared with the opercula. This improved readability has highlighted that a Gompertz growth function should be used for populations of this species, when in past studies, von Bertalanffy is often used. Statoliths are a viable improvement to opercula when assessing B. undatum in the context of fishery monitoring and management

    The distribution of depleted uranium contamination in Colonie, NY, USA

    Full text link
    Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.7–2.1 μg g− 1, with a weighted geometric mean of 1.05 μg g− 1; the contaminated soil samples comprise uranium up to 500 ± 40 μg g− 1. A plot of 236U/238U against 235U/238U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.05 ± 0.06) × 10− 3 235U/238U, (3.2 ± 0.1) × 10− 5 236U/238U, and (7.1 ± 0.3) × 10− 6 234U/238U. The analytical method is sensitive to as little as 50 ng g− 1 DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5 cm, collected 5.1 km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8 tonnes

    The morphologies and compositions of depleted uranium particles from an environmental case-study

    Get PDF
    Uraniferous particles from contaminated environmental samples were analysed by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDXA) and microfocus extended X-ray absorption fine structure (μEXAFS) spectroscopy. The particles of interest are uranium oxides, which were released into the environment by the combustion of scrap depleted uranium (DU) metal at a factory in Colonie, New York, USA. Most of the identified particles appear to have primary, 'as emitted' morphologies; some have evidence of minor dissolution, including corrosion pitting. Polycrystalline and often hollow microscopic spheres were identified, which are similar to particles produced by DU munitions impacting armoured targets. They are attributed to the autothermic oxidation of melt droplets. The compositions of the analysed spheres are dominated by UO2+x with variable amounts of U3O8, two of the least soluble and least bioaccessible phases of U. These particles, collected from dusts and soils, have survived more than 25 y in the terrestrial environment. This study further supports the case for using Colonie as an analogue for battlefield DU contamination

    The MNCs' Role and Responsibility in Deforestation of Tropical Forests

    No full text
    Deforestation of tropical forests has significant ecological ramifications. The role played by the multinational corporations (MNCs) in this unprecedented modification of the environment may have foreboding consequences to all inhabitants of the globe. Cattle ranching in Central and South America has accounted for more than half of all deforestation in that region. This article examines the deforestation by MNCs in that part of the world and explores an interactive theoretical framework that can be used to analyze the complex web of political, social, and economic forces related to the phenomenon.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore