31,712 research outputs found

    Composite Fermions in Modulated Structures: Transport and Surface Acoustic Waves

    Full text link
    Motivated by a recent experiment of Willett et al. [Phys. Rev. Lett. 78, 4478 (1997)], we employ semiclassical composite-fermion theory to study the effect of a periodic density modulation on a quantum Hall system near Landau level filling factor nu=1/2. We show that even a weak density modulation leads to dramatic changes in surface-acoustic-wave (SAW) propagation, and propose an explanation for several key features of the experimental observations. We predict that properly arranged dc transport measurements would show a structure similar to that seen in SAW measurements.Comment: Version published in Phys. Rev. Lett. Figures changed to show SAW velocity shift. LaTeX, 5 pages, two included postscript figure

    On spectrum of a Schroedinger operator with a fast oscillating compactly supported potential

    Full text link
    We study the phenomenon of an eigenvalue emerging from essential spectrum of a Schroedinger operator perturbed by a fast oscillating compactly supported potential. We prove the sufficient conditions for the existence and absence of such eigenvalue. If exists, we obtain the leading term of its asymptotics expansion.Comment: The article is originally written in Russian. The translation in English is made by D. Boriso

    A nu=2/5 Paired Wavefunction

    Full text link
    We construct a wavefunction, generalizing the well known Moore-Read Pfaffian, that describes spinless electrons at filling fraction nu=2/5 (or bosons at filling fraction nu=2/3) as the ground state of a very simple three body potential. We find, analogous to the Pfaffian, that when quasiholes are added there is a ground state degeneracy which can be identified as zero-modes of the quasiholes. The zero-modes are identified as having semionic statistics. We write this wavefunction as a correlator of the Virasoro minimal model conformal field theory M(5,3). Since this model is non-unitary, we conclude that this wavefunction is a quantum critical state. Nonetheless, we find that the overlaps of this wavefunction with exact diagonalizations in the lowest and first excited Landau level are very high, suggesting that this wavefunction may have experimental relevance for some transition that may occur in that regime.Comment: 13 pages, 2 figure

    Spinful Composite Fermions in a Negative Effective Field

    Full text link
    In this paper we study fractional quantum Hall composite fermion wavefunctions at filling fractions \nu = 2/3, 3/5, and 4/7. At each of these filling fractions, there are several possible wavefunctions with different spin polarizations, depending on how many spin-up or spin-down composite fermion Landau levels are occupied. We calculate the energy of the possible composite fermion wavefunctions and we predict transitions between ground states of different spin polarizations as the ratio of Zeeman energy to Coulomb energy is varied. Previously, several experiments have observed such transitions between states of differing spin polarization and we make direct comparison of our predictions to these experiments. For more detailed comparison between theory and experiment, we also include finite-thickness effects in our calculations. We find reasonable qualitative agreement between the experiments and composite fermion theory. Finally, we consider composite fermion states at filling factors \nu = 2+2/3, 2+3/5, and 2+4/7. The latter two cases we predict to be spin polarized even at zero Zeeman energy.Comment: 17 pages, 5 figures, 4 tables. (revision: incorporated referee suggestions, note added, updated references

    Radiolabeling human peripheral blood stem cells for positron emission tomography (PET) imaging in young rhesus monkeys.

    Get PDF
    These studies focused on a new radiolabeling technique with copper ((64)Cu) and zirconium ((89)Zr) for positron emission tomography (PET) imaging using a CD45 antibody. Synthesis of (64)Cu-CD45 and (89)Zr-CD45 immunoconjugates was performed and the evaluation of the potential toxicity of radiolabeling human peripheral blood stem cells (hPBSC) was assessed in vitro (viability, population doubling times, colony forming units). hPBSC viability was maintained as the dose of (64)Cu-TETA-CD45 increased from 0 (92%) to 160 µCi/mL (76%, p>0.05). Radiolabeling efficiency was not significantly increased with concentrations of (64)Cu-TETA-CD45 >20 µCi/mL (p>0.50). Toxicity affecting both growth and colony formation was observed with hPBSC radiolabeled with ≥40 µCi/mL (p<0.05). For (89)Zr, there were no significant differences in viability (p>0.05), and a trend towards increased radiolabeling efficiency was noted as the dose of (89)Zr-Df-CD45 increased, with a greater level of radiolabeling with 160 µCi/mL compared to 0-40 µCi/mL (p<0.05). A greater than 2,000 fold-increase in the level of (89)Zr-Df-CD45 labeling efficiency was observed when compared to (64)Cu-TETA-CD45. Similar to (64)Cu-TETA-CD45, toxicity was noted when hPBSC were radiolabeled with ≥40 µCi/mL (p<0.05) (growth, colony formation). Taken together, 20 µCi/mL resulted in the highest level of radiolabeling efficiency without altering cell function. Young rhesus monkeys that had been transplanted prenatally with 25×10(6) hPBSC expressing firefly luciferase were assessed with bioluminescence imaging (BLI), then 0.3 mCi of (89)Zr-Df-CD45, which showed the best radiolabeling efficiency, was injected intravenously for PET imaging. Results suggest that (89)Zr-Df-CD45 was able to identify engrafted hPBSC in the same locations identified by BLI, although the background was high

    Opto-mechanical micro-macro entanglement

    Get PDF
    We propose to create and detect opto-mechanical entanglement by storing one component of an entangled state of light in a mechanical resonator and then retrieving it. Using micro-macro entanglement of light as recently demonstrated experimentally, one can then create opto-mechanical entangled states where the components of the superposition are macroscopically different. We apply this general approach to two-mode squeezed states where one mode has undergone a large displacement. Based on an analysis of the relevant experimental imperfections, the scheme appears feasible with current technology.Comment: 7 pages, 6 figures, to appear in PRL, submission coordinated with Sekatski et al. who reported on similar result
    • …
    corecore