23 research outputs found

    Expression of a large coding sequence: Gene therapy vectors for Ataxia Telangiectasia

    Full text link
    Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging.We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A.Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm-deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53)

    Lentiviral gene therapy reverts GPIX expression and phenotype in Bernard-Soulier syndrome type C

    Full text link
    Bernard-Soulier syndrome (BSS) is a rare congenital disease characterized by macrothrombocytopenia and frequent bleeding. It is caused by pathogenic variants in three genes (GP1BA, GP1BB, or GP9) that encode for the GPIbα, GPIbβ, and GPIX subunits of the GPIb-V-IX complex, the main platelet surface receptor for von Willebrand factor, being essential for platelet adhesion and aggregation. According to the affected gene, we distinguish BSS type A1 (GP1BA), type B (GP1BB), or type C (GP9). Pathogenic variants in these genes cause absent, incomplete, or dysfunctional GPIb-V-IX receptor and, consequently, a hemorrhagic phenotype. Using gene-editing tools, we generated knockout (KO) human cellular models that helped us to better understand GPIb-V-IX complex assembly. Furthermore, we developed novel lentiviral vectors capable of correcting GPIX expression, localization, and functionality in human GP9-KO megakaryoblastic cell lines. Generated GP9-KO induced pluripotent stem cells produced platelets that recapitulated the BSS phenotype: absence of GPIX on the membrane surface and large size. Importantly, gene therapy tools reverted both characteristics. Finally, hematopoietic stem cells from two unrelated BSS type C patients were transduced with the gene therapy vectors and differentiated to produce GPIX-expressing megakaryocytes and platelets with a reduced size. These results demonstrate the potential of lentiviral-based gene therapy to rescue BSS type C

    Transduction of fetal mice with a feline lentiviral vector induces liver tumors which exhibit an E2F activation signature

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2014 The American Society of Gene & Cell Therapy.Lentiviral vectors are widely used in basic research and clinical applications for gene transfer and long-term expression; however, safety issues have not yet been completely resolved. In this study, we characterized hepatocarcinomas that developed in mice 1 year after in utero administration of a feline-derived lentiviral vector. Mapped viral integration sites differed among tumors and did not coincide with the regions of chromosomal aberrations. Furthermore, gene expression profiling revealed that no known cancer-associated genes were deregulated in the vicinity of viral integrations. Nevertheless, five of the six tumors exhibited highly significant upregulation of E2F target genes, of which a majority are associated with oncogenesis, DNA damage response, and chromosomal instability. We further show in vivo and in vitro that E2F activation occurs early on following transduction of both fetal mice and cultured human hepatocytes. On the basis of the similarities in E2F target gene expression patterns among tumors and the lack of evidence implicating insertional mutagenesis, we propose that transduction of fetal mice with a feline lentiviral vector induces E2F-mediated major cellular processes that drive hepatocytes toward uncontrolled proliferation culminating in tumorigenesis.ISF, DFG, the Kamea Scientific Foundation, the European Research Council, the Lillyan & Alfy Nathan, Barbara Fox Miller, and Wolfson Foundations

    Recurrent and multiple bladder tumors show conserved expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urothelial carcinomas originate from the epithelial cells of the inner lining of the bladder and may appear as single or as multiple synchronous tumors. Patients with urothelial carcinomas frequently show recurrences after treatment making follow-up necessary. The leading hypothesis explaining the origin of meta- and synchronous tumors assumes a monoclonal origin. However, the genetic relationship among consecutive tumors has been shown to be complex in as much as the genetic evolution does not adhere to the chronological appearance of the metachronous tumors. Consequently, genetically less evolved tumors may appear chronologically later than genetically related but more evolved tumors.</p> <p>Methods</p> <p>Forty-nine meta- or synchronous urothelial tumors from 22 patients were analyzed using expression profiling, conventional CGH, LOH, and mutation analyses.</p> <p>Results</p> <p>We show by CGH that partial chromosomal losses in the initial tumors may not be present in the recurring tumors, by LOH that different haplotypes may be lost and that detected regions of LOH may be smaller in recurring tumors, and that mutations present in the initial tumor may not be present in the recurring ones. In contrast we show that despite apparent genomic differences, the recurrent and multiple bladder tumors from the same patients display remarkably similar expression profiles.</p> <p>Conclusion</p> <p>Our findings show that even though the vast majority of the analyzed meta- and synchronous tumors from the same patients are not likely to have originated directly from the preceding tumor they still show remarkably similar expressions profiles. The presented data suggests that an expression profile is established early in tumor development and that this profile is stable and maintained in recurring tumors.</p

    Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model

    No full text
    Insertional leukemogenesis represents the major risk factor of hematopoietic stem cell (HSC) based gene therapy utilizing integrating viral vectors. To develop a pre-clinical model for the evaluation of vector-related genotoxicity directly in the relevant human target cells, cord blood CD34+ HSCs were transplanted into immunodeficient NOD.SCID.IL2rg−/− (NSG) mice after transduction with an LTR-driven gammaretroviral vector (GV). Furthermore, we specifically investigated the effect of prolonged in vitro culture in the presence of cytokines recently described to promote HSC expansion or maintenance. Clonality of human hematopoiesis in NSG mice was assessed by high throughput insertion site analyses and validated by insertion site-specific PCR depicting a GV typical integration profile with insertion sites resembling to 25% those of clinical studies. No overrepresentation of integrations in the vicinity of cancer-related genes was observed, however, several dominant clones were identified including two clones harboring integrations in the ANGPT1 and near the ANGPT2 genes associated with deregulated ANGPT1- and ANGPT2-mRNA levels. While these data underscore the potential value of the NSG model, our studies also identified short-comings such as overall low numbers of engrafted HSCs, limited in vivo observation time, and the challenges of in-depth insertion site analyses by low contribution of gene modified hematopoiesis

    In vivo generation of human CD19‐CAR T cells results in B‐cell depletion and signs of cytokine release syndrome

    No full text
    Abstract Chimeric antigen receptor (CAR) T cells brought substantial benefit to patients with B‐cell malignancies. Notwithstanding, CAR T‐cell manufacturing requires complex procedures impeding the broad supply chain. Here, we provide evidence that human CD19‐CAR T cells can be generated directly in vivo using the lentiviral vector CD8‐LV specifically targeting human CD8+ cells. Administration into mice xenografted with Raji lymphoma cells and human peripheral blood mononuclear cells led to CAR expression solely in CD8+ T cells and efficacious elimination of CD19+ B cells. Further, upon injection of CD8‐LV into mice transplanted with human CD34+ cells, induction of CAR T cells and CD19+ B‐cell depletion was observed in 7 out of 10 treated animals. Notably, three mice showed elevated levels of human cytokines in plasma. Tissue‐invading CAR T cells and complete elimination of the B‐lymphocyte‐rich zones in spleen were indicative of a cytokine release syndrome. Our data demonstrate the feasibility of in vivo reprogramming of human CD8+ CAR T cells active against CD19+ cells, yet with similar adverse effects currently notorious in the clinical practice

    In vivo generation of human CD19‐CAR T cells results in B‐cell depletion and signs of cytokine release syndrome

    No full text
    Chimeric antigen receptor (CAR) T cells brought substantial benefit to patients with B‐cell malignancies. Notwithstanding, CAR T‐cell manufacturing requires complex procedures impeding the broad supply chain. Here, we provide evidence that human CD19‐CAR T cells can be generated directly in vivo using the lentiviral vector CD8‐LV specifically targeting human CD8+ cells. Administration into mice xenografted with Raji lymphoma cells and human peripheral blood mononuclear cells led to CAR expression solely in CD8+ T cells and efficacious elimination of CD19+ B cells. Further, upon injection of CD8‐LV into mice transplanted with human CD34+ cells, induction of CAR T cells and CD19+ B‐cell depletion was observed in 7 out of 10 treated animals. Notably, three mice showed elevated levels of human cytokines in plasma. Tissue‐invading CAR T cells and complete elimination of the B‐lymphocyte‐rich zones in spleen were indicative of a cytokine release syndrome. Our data demonstrate the feasibility of in vivo reprogramming of human CD8+ CAR T cells active against CD19+ cells, yet with similar adverse effects currently notorious in the clinical practice

    Hepatic sinusoidal obstruction syndrome and short-term application of 6-thioguanine in pediatric acute lymphoblastic leukemia

    Get PDF
    Long-term treatment with 6-thioguanine (6-TG) for pediatric acute lymphoblastic leukemia (ALL) is associated with high rates of hepatic sinusoidal obstruction syndrome (SOS). Nevertheless, current treatment continues to use short-term applications of 6-TG with only sparse information on toxicity. 6-TG is metabolized by thiopurine methyltransferase (TPMT) which underlies clinically relevant genetic polymorphism. We analyzed the association between hepatic SOS reported as a serious adverse event (SAE) and short-term 6-TG application in 3983 pediatric ALL patients treated on trial AIEOP-BFM ALL 2000 (derivation cohort) and defined the role of TPMT genotype in this relationship. We identified 17 patients (0.43%) with hepatic SOS, 13 of which with short-term exposure to 6-TG (P < 0.0001). Eight of the 13 patients were heterozygous for low-activity TPMT variants, resulting in a 22.4-fold (95% confidence interval 7.1–70.7; P ≤ 0.0001) increased risk of hepatic SOS for heterozygotes in comparison to TPMT wild-type patients. Results were supported by independent replication analysis. All patients with hepatic SOS after short-term 6-TG recovered and did not demonstrate residual symptoms. Thus, hepatic SOS is associated with short-term exposure to 6-TG during treatment of pediatric ALL and SOS risk is increased for patients with low-activity TPMT genotypes
    corecore