340 research outputs found

    F10RS SGR No. 5 (Athletic Dept)

    Get PDF
    A RESOLUTION To acknowledge and thank the Athletic Department at Louisiana State University for its contribution to the University

    The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow

    Get PDF
    This paper is concerned with the computation of the drag T associated with a body traveling at uniform velocity in a fluid governed by the stationary Navier–Stokes equations. It is assumed that the fluid fills a domain of the form Ω+u, where Ω ⊂ R3 is a reference domain and u is a displacement field. We assume only that Ω is a Lipschitz domain and that u is Lipschitz-continuous. We prove that, at least when the velocity of the body is sufficiently small, u 7→ T(Ω + u) is a C∞ mapping (in a ball centered at 0). We also compute the derivative at 0.Dirección General de Investigación Científica y Tecnológic

    Combined collision-induced dissociation and photo-selected reaction monitoring mass spectrometry modes for simultaneous analysis of coagulation factors and estrogens

    Get PDF
    AbstractOral estrogens are directly associated with changes in plasma levels of coagulation proteins. Thus, the detection of any variation in protein concentrations due to estrogen contraceptives, by a simultaneous analysis of both coagulation proteins and estrogens, would be a very informative tool. In the present study, the merit of photo-selected reaction monitoring (SRM), a new analytical tool, was evaluated towards estrogens detection in plasma. Then, SRM and photo-SRM detection modes were combined for the simultaneous analysis of estrogen molecules together with heparin co-factor and factor XIIa, two proteins involved in the coagulation cascade. This study shows that photo-SRM could open new multiplexed analytical routes

    Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our laboratory we use cultured chicory (<it>Cichorium intybus</it>) explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15) sharing a similar genetic background. K59 is a responsive genotype (embryogenic) capable of undergoing complete cell reactivation <it>i.e</it>. cell de- and re-differentiation leading to somatic embryogenesis (SE), whereas C15 is a non-responsive genotype (non-embryogenic) and is unable to undergo SE. Previous studies <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> showed that the use of the β-D-glucosyl Yariv reagent (β-GlcY) that specifically binds arabinogalactan-proteins (AGPs) blocked somatic embryo production in chicory root explants. This observation indicates that β-GlcY is a useful tool for investigating somatic embryogenesis (SE) in chicory. In addition, a putative AGP (DT212818) encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation <abbrgrp><abbr bid="B2">2</abbr></abbrgrp>. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used β-GlcY to block SE in order to identify genes potentially involved in this process.</p> <p>Results</p> <p>Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. β-GlcY-treatment of explants blocked <it>in vitro </it>SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by β-GlcY-treatment. Eight genes were both differentially expressed between K59 and C15 genotypes during SE induction and transcriptionally affected by β-GlcY-treatment: <it>AGP </it>(DT212818), <it>26 S proteasome AAA ATPase subunit 6 </it>(<it>RPT6</it>), <it>remorin </it>(<it>REM</it>), <it>metallothionein-1 </it>(<it>MT1</it>), two non-specific lipid transfer proteins genes (<it>SDI-9 and DEA1</it>), <it>3-hydroxy-3-methylglutaryl-CoA reductase </it>(<it>HMG-CoA reductase</it>), and <it>snakin 2 </it>(<it>SN2</it>). These results suggest that the 8 genes, including the previously-identified <it>AGP </it>gene (DT212818), could be involved in cell fate determination events leading to SE commitment in chicory.</p> <p>Conclusion</p> <p>The use of two different chicory genotypes differing in their responsiveness to SE induction, together with β-GlcY-treatment represented an efficient tool to discriminate cell reactivation from the SE morphogenetic pathway. Such an approach, together with microarray analyses, permitted us to identify several putative key genes related to the SE morphogenetic pathway in chicory.</p

    Prevention of Liver Fibrosis and Cancer in Africa: The PROLIFICA project – a collaborative study of hepatitis B-related liver disease in West Africa

    Get PDF
    Hepatitis B virus (HBV) infection causes a spectrum of acute and chronic liver disease ranging from inactive chronic carrier status to progressive chronic hepatitis, culminating in end-stage cirrhosis and liver cancer. In sub-Saharan Africa, HBV infection is endemic and the HBV-related disease burden is high, making HBV a signficant threat to health in the African continent. The European Union-funded Prevention of Liver Fibrosis and Cancer in Africa (PROLIFICA) project was established in 2011, with the central directive to reduce the incidence of HBV-related liver cancer in West Africa. In this editorial, we outline some of the achievements and challenges of the PROLIFICA platform in West Africa, highlighting the the importance of collaborative studies in Africa
    • …
    corecore