214 research outputs found

    Evidence-Based Dialogue Maps as a research tool to evaluate the quality of school pupils’ scientific argumentation

    Get PDF
    This pilot study focuses on the potential of Evidence-based Dialogue Mapping as a participatory action research tool to investigate young teenagers’ scientific argumentation. Evidence-based Dialogue Mapping is a technique for representing graphically an argumentative dialogue through Questions, Ideas, Pros, Cons and Data. Our research objective is to better understand the usage of Compendium, a Dialogue Mapping software tool, as both (1) a learning strategy to scaffold school pupils’ argumentation and (2) as a method to investigate the quality of their argumentative essays. The participants were a science teacher-researcher, a knowledge mapping researcher and 20 pupils, 12-13 years old, in a summer science course for “gifted and talented” children in the UK. This study draws on multiple data sources: discussion forum, science teacher-researcher’s and pupils’ Dialogue Maps, pupil essays, and reflective comments about the uses of mapping for writing. Through qualitative analysis of two case studies, we examine the role of Evidence-based Dialogue Maps as a mediating tool in scientific reasoning: as conceptual bridges for linking and making knowledge intelligible; as support for the linearisation task of generating a coherent document outline; as a reflective aid to rethinking reasoning in response to teacher feedback; and as a visual language for making arguments tangible via cartographic conventions

    Future Availability of Non-renewable Metal Resources and the Influence of Environmental, Social, and Governance Conflicts on Metal Production

    Get PDF
    Metal mining provides the elements required for the provision of energy, communication, transport and more. The increasing uptake of green technology, such as electric vehicles and renewable energy, will also further increase metal demand. However, the production lifespan of an average mine is far shorter than the timescales of mineral deposit formation, suggesting that metal mining is unsustainable on human timescales. In addition, some research suggests that known primary metal supplies will be exhausted within about 50 years. Here we present an analysis of global metal reserves that suggests that primary metal supplies will not run out on this timescale. Instead, we find that global reserves for most metals have not significantly decreased relative to production over time. This is the result of the replenishment of exhausted reserves by the further delineation of known orebodies as mineral exploration progresses. We suggest that environmental, social, and governance factors are likely to be the main source of risk in metal and mineral supply over the coming decades, more so than direct reserve depletion. This could potentially lead to increases in resource conflict and decreases in the conversion of resources to reserves and production

    A Tale of Two Fractals: The Hofstadter Butterfly and The Integral Apollonian Gaskets

    Full text link
    This paper unveils a mapping between a quantum fractal that describes a physical phenomena, and an abstract geometrical fractal. The quantum fractal is the Hofstadter butterfly discovered in 1976 in an iconic condensed matter problem of electrons moving in a two-dimensional lattice in a transverse magnetic field. The geometric fractal is the integer Apollonian gasket characterized in terms of a 300 BC problem of mutually tangent circles. Both of these fractals are made up of integers. In the Hofstadter butterfly, these integers encode the topological quantum numbers of quantum Hall conductivity. In the Apollonian gaskets an infinite number of mutually tangent circles are nested inside each other, where each circle has integer curvature. The mapping between these two fractals reveals a hidden threefold symmetry embedded in the kaleidoscopic images that describe the asymptotic scaling properties of the butterfly. This paper also serves as a mini review of these fractals, emphasizing their hierarchical aspects in terms of Farey fractions

    Ginzburg-Landau vortex dynamics with pinning and strong applied currents

    Full text link
    We study a mixed heat and Schr\"odinger Ginzburg-Landau evolution equation on a bounded two-dimensional domain with an electric current applied on the boundary and a pinning potential term. This is meant to model a superconductor subjected to an applied electric current and electromagnetic field and containing impurities. Such a current is expected to set the vortices in motion, while the pinning term drives them toward minima of the pinning potential and "pins" them there. We derive the limiting dynamics of a finite number of vortices in the limit of a large Ginzburg-Landau parameter, or \ep \to 0, when the intensity of the electric current and applied magnetic field on the boundary scale like \lep. We show that the limiting velocity of the vortices is the sum of a Lorentz force, due to the current, and a pinning force. We state an analogous result for a model Ginzburg-Landau equation without magnetic field but with forcing terms. Our proof provides a unified approach to various proofs of dynamics of Ginzburg-Landau vortices.Comment: 48 pages; v2: minor errors and typos correcte

    The Longitudinal Polarimeter at HERA

    Get PDF
    The design, construction and operation of a Compton back-scattering laser polarimeter at the HERA storage ring at DESY are described. The device measures the longitudinal polarization of the electron beam between the spin rotators at the HERMES experiment with a fractional systematic uncertainty of 1.6%. A measurement of the beam polarization to an absolute statistical precision of 0.01 requires typically one minute when the device is operated in the multi-photon mode. The polarimeter also measures the polarization of each individual electron bunch to an absolute statistical precision of 0.06 in approximately five minutes. It was found that colliding and non-colliding bunches can have substantially different polarizations. This information is important to the collider experiments H1 and ZEUS for their future longitudinally polarized electron program because those experiments use the colliding bunches only.Comment: 21 pages (Latex), 14 figures (EPS

    (Sub)mm Interferometry Applications in Star Formation Research

    Full text link
    This contribution gives an overview about various applications of (sub)mm interferometry in star formation research. The topics covered are molecular outflows, accretion disks, fragmentation and chemical properties of low- and high-mass star-forming regions. A short outlook on the capabilities of ALMA is given as well.Comment: 20 pages, 7 figures, in proceedings to "2nd European School on Jets from Young Star: High Angular Resolution Observations". A high-resolution version of the paper can be found at http://www.mpia.de/homes/beuther/papers.htm

    Crime as risk taking

    Get PDF
    Engagement in criminal activity may be viewed as risk-taking behaviour as it has both benefits and drawbacks that are probabilistic. In two studies, we examined how individuals' risk perceptions can inform our understanding of their intentions to engage in criminal activity. Study 1 measured youths' perceptions of the value and probability of the benefits and drawbacks of engaging in three common crimes (i.e. shoplifting, forgery, and buying illegal drugs), and examined how well these perceptions predicted youths' forecasted engagement in these crimes, controlling for their past engagement. We found that intentions to engage in criminal activity were best predicted by the perceived value of the benefits that may be obtained, irrespective of their probabilities or the drawbacks that may also be incurred. Study 2 specified the benefit and drawback that youth thought about and examined another crime (i.e. drinking and driving). The findings of Study 1 were replicated under these conditions. The present research supports a limited rationality perspective on criminal intentions, and can have implications for crime prevention/intervention strategies

    Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target

    Full text link
    A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure
    corecore