146 research outputs found

    Canada Country Study

    Get PDF
    human development, climate change

    How climate controls the flux of nitrogen by the Mississippi River and the development of hypoxia in the Gulf of Mexico

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110015/1/lno20075220856.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110015/2/0856a1.pd

    Scientific Advocacy: A Tool for Assessing the Risks of Engagement

    Get PDF
    Scientists active in the public sphere recognize the importance of broader communications but sometimes have an incomplete or exaggerated view of the risks to both their public and professional reputations as a function of their advocacy. These risks are connected fundamentally to the degree that the advocacy positions they take are based on values that are shared (or not) with their audiences. An encapsulation of the connections between Risks, Advocacy, and Values in Engagement (RAVE) may help inform choices that public scientists must make

    A new, high-resolution global mass coral bleaching database

    Get PDF
    Episodes of mass coral bleaching have been reported in recent decades and have raised concerns about the future of coral reefs on a warming planet. Despite the efforts to enhance and coordinate coral reef monitoring within and across countries, our knowledge of the geographic extent of mass coral bleaching over the past few decades is incomplete. Existing databases, like ReefBase, are limited by the voluntary nature of contributions, geographical biases in data collection, and the variations in the spatial scale of bleaching reports. In this study, we have developed the first-ever gridded, global-scale historical coral bleaching database. First, we conducted a targeted search for bleaching reports not included in ReefBase by personally contacting scientists and divers conducting monitoring in under-reported locations and by extracting data from the literature. This search increased the number of observed bleaching reports by 79%, from 4146 to 7429. Second, we employed spatial interpolation techniques to develop annual 0.04 degrees x 0.04 degrees latitude-longitude global maps of the probability that bleaching occurred for 1985 through 2010. Initial results indicate that the area of coral reefs with a more likely than not (> 50%) or likely (> 66%) probability of bleaching was eight times higher in the second half of the assessed time period, after the 1997/1998 El Nino. The results also indicate that annual maximum Degree Heating Weeks, a measure of thermal stress, for coral reefs with a high probability of bleaching increased over time. The database will help the scientific community more accurately assess the change in the frequency of mass coral bleaching events, validate methods of predicting mass coral bleaching, and test whether coral reefs are adjusting to rising ocean temperatures

    Coral adaptive capacity insufficient to halt global transition of coral reefs into net erosion under climate change

    Get PDF
    Projecting the effects of climate change on net reef calcium carbonate production is critical to understanding the future impacts on ecosystem function, but prior estimates have not included corals\u27 natural adaptive capacity to such change. Here we estimate how the ability of symbionts to evolve tolerance to heat stress, or for coral hosts to shuffle to favourable symbionts, and their combination, may influence responses to the combined impacts of ocean warming and acidification under three representative concentration pathway (RCP) emissions scenarios (RCP2.6, RCP4.5 and RCP8.5). We show that symbiont evolution and shuffling, both individually and when combined, favours persistent positive net reef calcium carbonate production. However, our projections of future net calcium carbonate production (NCCP) under climate change vary both spatially and by RCP. For example, 19%-35% of modelled coral reefs are still projected to have net positive NCCP by 2050 if symbionts can evolve increased thermal tolerance, depending on the RCP. Without symbiont adaptive capacity, the number of coral reefs with positive NCCP drops to 9%-13% by 2050. Accounting for both symbiont evolution and shuffling, we project median positive NCPP of coral reefs will still occur under low greenhouse emissions (RCP2.6) in the Indian Ocean, and even under moderate emissions (RCP4.5) in the Pacific Ocean. However, adaptive capacity will be insufficient to halt the transition of coral reefs globally into erosion by 2050 under severe emissions scenarios (RCP8.5)

    Coping with Commitment: Projected Thermal Stress on Coral Reefs under Different Future Scenarios

    Get PDF
    BACKGROUND: Periods of anomalously warm ocean temperatures can lead to mass coral bleaching. Past studies have concluded that anthropogenic climate change may rapidly increase the frequency of these thermal stress events, leading to declines in coral cover, shifts in the composition of corals and other reef-dwelling organisms, and stress on the human populations who depend on coral reef ecosystems for food, income and shoreline protection. The ability of greenhouse gas mitigation to alter the near-term forecast for coral reefs is limited by the time lag between greenhouse gas emissions and the physical climate response. METHODOLOGY/PRINCIPAL FINDINGS: This study uses observed sea surface temperatures and the results of global climate model forced with five different future emissions scenarios to evaluate the "committed warming" for coral reefs worldwide. The results show that the physical warming commitment from current accumulation of greenhouse gases in the atmosphere could cause over half of the world's coral reefs to experience harmfully frequent (p> or =0.2 year(-1)) thermal stress by 2080. An additional "societal" warming commitment, caused by the time required to shift from a business-as-usual emissions trajectory to a 550 ppm CO(2) stabilization trajectory, may cause over 80% of the world's coral reefs to experience harmfully frequent events by 2030. Thermal adaptation of 1.5 degrees C would delay the thermal stress forecast by 50-80 years. CONCLUSIONS/SIGNIFICANCE: The results suggest that adaptation -- via biological mechanisms, coral community shifts and/or management interventions -- could provide time to change the trajectory of greenhouse gas emissions and possibly avoid the recurrence of harmfully frequent events at the majority (97%) of the world's coral reefs this century. Without any thermal adaptation, atmospheric CO(2) concentrations may need to be stabilized below current levels to avoid the degradation of coral reef ecosystems from frequent thermal stress events

    Historical Temperature Variability Affects Coral Response to Heat Stress

    Get PDF
    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions

    Reply to comment by Karnauskas et al. on "Equatorial Pacific coral geochemical records show recent weakening of the Walker circulation"

    Get PDF
    In our paper describing a new coral record from Butaritari, we hypothesized that comparing the temporal trends in our records to coral records from farther east in the equatorial Pacific may support the evidence for a weakening of a Walker circulation, documented elsewhere in the literature [Power and Smith, 2007; Tokinaga et al., 2012]. Weakening of the Walker circulation is expected under global warming due to an imbalance in the rate of change in different aspects of the hydrological cycle [Vecchi and Soden, 2007]. We thank Karnauskas et al. [2015] for recognizing the value of our Butaritari coral climate reconstruction, and we appreciate their critique of our study. The Karnauskas et al. [2015] analyses strengthen our argument regarding the utility of interisland coral-proxy derived sea surface temperature (SST) gradients as a Walker circulation metric, but we disagree with their interpretation of decadal variability in our records. Here we provide additional analyses, which confirm that our reconstruction [Carilli et al., 2014] shows a long-term weakening of the Walker circulation over 1972-1998. We also document that significant decadal variations in Walker circulation strength, and for particular choices of start and end years over which trends are calculated, are able to show slight Walker strengthening. Overall, we conclude that Walker circulation variations are more nuanced than either our original publication [Carilli et al., 2014] or the subsequent Karnauskas et al. [2015] comment would suggest. Karnauskas et al. [2015] also provide a detailed analysis of Equatorial Undercurrent (EUC) activity near the Gilbert Islands and argue that the EUC does not strongly affect Butaritari. Our original publication did not claim to find significant EUC/Butaritari linkages, and we appreciate the diligence of Karnauskas et al. [2015] for ruling this out as a possibility

    Equatorial Pacific coral geochemical records show recent weakening of the Walker Circulation

    Get PDF
    Equatorial Pacific ocean-atmosphere interactions affect climate globally, and a key component of the coupled system is the Walker Circulation, which is driven by sea surface temperature (SST) gradients across the equatorial Pacific. There is conflicting evidence as to whether the SST gradient and Walker Circulation have strengthened or weakened over the late twentieth century. We present new records of SST and sea surface salinity (SSS) spanning 1959-2010 based on paired measurements of Sr/Ca and δ18O in a massive Porites coral from Butaritari atoll in the Gilbert Islands, Republic of Kiribati, in the central western equatorial Pacific. The records show 2-7 year variability correlated with the El Niño-Southern Oscillation (ENSO) and corresponding shifts in the extent of the Indo-Pacific Warm Pool, and decadal-scale signals related to the Pacific Decadal Oscillation and the Pacific Warm Pool Index. In addition, the Butaritari coral records reveal a small but significant increase in SST (0.39°C) from 1959 to 2010 with no accompanying change in SSS, a trend that persists even when ENSO variability is removed. In contrast, larger increases in SST and SSS are evident in coral records from the equatorial Pacific Line Islands, located east of Butaritari. Taken together, the equatorial Pacific coral records suggest an overall reduction in the east-west SST and SSS gradient over the last several decades, and a recent weakening of the Walker Circulation
    • …
    corecore