210 research outputs found

    Reliably Classifying Novice Programmer Exam Responses using the SOLO Taxonomy

    Full text link
    Abstract: Past papers of the BRACElet project have described an approach to teaching and assessing students where the students are presented with short pieces of code, and are instructed to explain, in plain English, what the code does. The student responses to these types of questions can be analysed according to the SOLO taxonomy. Some students display an understanding of the code as a single, functional whole, while other students cannot âsee the forest for the treesâ . However, classifying student responses into the taxonomy is not always straightforward. This paper analyses the reliability of the SOLO taxonomy as a means of categorising student responses. The paper derives an augmented set of SOLO categories for application to the programming domain, and proposes a set of guidelines for researchers to use

    ***TEST SUBMISSION*** BMJ-15: Acceptance within last 3 months (01/03/2020); Online publication within 12 months (10/12/2020); Embargo (10/09/2021) less than 12 months from pub date; VoR

    Get PDF
    From UAT Test publisher via Jisc Publications RouterHistory: accepted 2020-03-01, epub 2020-12-10Article version: VoRPublication status: PublishedAbstract: TEST: THIS IS A PUBLICATIONS ROUTER TEST SUBMISSION. Objectives: To quantify post-colonoscopy colorectal cancer (PCCRC) rates in England by using recent World Endoscopy Organisation guidelines, compare incidence among colonoscopy providers, and explore associated factors that could benefit from quality improvement initiatives. Design: Population based cohort study. Setting: National Health Service in England between 2005 and 2013. Population: All people undergoing colonoscopy and subsequently diagnosed as having colorectal cancer up to three years after their investigation (PCCRC-3yr). Main outcome measures: National trends in incidence of PCCRC (within 6-36 months of colonoscopy), univariable and multivariable analyses to explore factors associated with occurrence, and funnel plots to measure variation among providers. Results: The overall unadjusted PCCRC-3yr rate was 7.4% (9317/126 152), which decreased from 9.0% in 2005 to 6.5% in 2013 (P<0.01). Rates were lower for colonoscopies performed under the NHS bowel cancer screening programme (593/16 640, 3.6%), while they were higher for those conducted by non-NHS providers (187/2009, 9.3%). Rates were higher in women, in older age groups, and in people with inflammatory bowel disease or diverticular disease, in those with higher comorbidity scores, and in people with previous cancers. Substantial variation in rates among colonoscopy providers remained after adjustment for case mix. Conclusions: Wide variation exists in PCCRC-3yr rates across NHS colonoscopy providers in England. The lowest incidence was seen in colonoscopies performed under the NHS bowel cancer screening programme. Quality improvement initiatives are needed to address this variation in rates and prevent colorectal cancer by enabling earlier diagnosis, removing premalignant polyps, and therefore improving outcomes

    An automated machine learning approach to predict brain age from cortical anatomical measures

    Get PDF
    The use of machine learning (ML) algorithms has significantly increased in neuroscience. However, from the vast extent of possible ML algorithms, which one is the optimal model to predict the target variable? What are the hyperparameters for such a model? Given the plethora of possible answers to these questions, in the last years, automated ML (autoML) has been gaining attention. Here, we apply an autoML library called Tree-based Pipeline Optimisation Tool (TPOT) which uses a tree-based representation of ML pipelines and conducts a genetic programming-based approach to find the model and its hyperparameters that more closely predicts the subject's true age. To explore autoML and evaluate its efficacy within neuroimaging data sets, we chose a problem that has been the focus of previous extensive study: brain age prediction. Without any prior knowledge, TPOT was able to scan through the model space and create pipelines that outperformed the state-of-the-art accuracy for Freesurfer-based models using only thickness and volume information for anatomical structure. In particular, we compared the performance of TPOT (mean absolute error [MAE]: 4.612 ± .124 years) and a relevance vector regression (MAE 5.474 ± .140 years). TPOT also suggested interesting combinations of models that do not match the current most used models for brain prediction but generalise well to unseen data. AutoML showed promising results as a data-driven approach to find optimal models for neuroimaging applications

    Structural neuroimaging measures and lifetime depression across levels of phenotyping in UK biobank

    Get PDF
    Depression is assessed in various ways in research, with large population studies often relying on minimal phenotyping. Genetic results suggest clinical diagnoses and self-report measures of depression show some core similarities, but also important differences. It is not yet clear how neuroimaging associations depend on levels of phenotyping. We studied 39,300 UK Biobank imaging participants (20,701 female; aged 44.6 to 82.3 years, M = 64.1, SD = 7.5) with structural neuroimaging and lifetime depression data. Past depression phenotypes included a single-item self-report measure, an intermediate measure of ‘probable’ lifetime depression, derived from multiple questionnaire items relevant to a history of depression, and a retrospective clinical diagnosis according to DSM-IV criteria. We tested (i) associations between brain structural measures and each depression phenotype, and (ii) effects of phenotype on these associations. Depression-brain structure associations were small (β < 0.1) for all phenotypes, but still significant after FDR correction for many regional metrics. Lifetime depression was consistently associated with reduced white matter integrity across phenotypes. Cortical thickness showed negative associations with Self-reported Depression in particular. Phenotype effects were small across most metrics, but significant for cortical thickness in most regions. We report consistent effects of lifetime depression in brain structural measures, including reduced integrity of thalamic radiations and association fibres. We also observed significant differences in associations with cortical thickness across depression phenotypes. Although these results did not relate to level of phenotyping as expected, effects of phenotype definition are still an important consideration for future depression research
    • …
    corecore