1,917 research outputs found

    Generation of FGF reporter transgenic zebrafish and their utility in chemical screens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fibroblast Growth Factors (FGFs) represent a large family of secreted proteins that are required for proper development and physiological processes. Mutations in mouse and zebrafish FGFs result in abnormal embryogenesis and lethality. A key to understanding the precise role for these factors is to determine their spatial and temporal activity during embryogenesis.</p> <p>Results</p> <p>Expression of <it>Dual Specificity Phosphatase 6 </it>(<it>dusp6</it>, also known as <it>Mkp3</it>) is controlled by FGF signalling throughout development. The <it>Dusp6 </it>promoter was isolated from zebrafish and used to drive expression of destabilized green fluorescent protein (<it>d2EGFP</it>) in transgenic embryos (<it>Tg(Dusp6:d2EGFP)</it>). Expression of d2EGFP is initiated as early as 4 hours post-fertilization (hpf) within the future dorsal region of the embryo, where <it>fgf3 </it>and <it>fgf8 </it>are initially expressed. At later stages, d2EGFP is detected within structures that correlate with the expression of <it>Fgf </it>ligands and their receptors. This includes the mid-hindbrain boundary (MHB), pharyngeal endoderm, otic vesicle, hindbrain, and Kupffer's vesicle. The expression of d2EGFP is under the control of FGF signalling as treatment with FGF Receptor (FGFR) inhibitors results in the suppression of d2EGFP expression. In a pilot screen of commercially available small molecules we have evaluated the effectiveness of the transgenic lines to identify specific FGF inhibitors within the class of indolinones. These compounds were counter screened with the transgenic line <it>Tg(Fli1:EGFP)</it><sup><it>y</it>1</sup>, that serves as an indirect read-out for Vascular Endothelial Growth Factor (VEGF) signalling in order to determine the specificity between related receptor tyrosine kinases (RTKs). From these assays it is possible to determine the specificity of these indolinones towards specific RTK signalling pathways. This has enabled the identification of compounds that can block specifically the VEGFR or the FGFR signalling pathway.</p> <p>Conclusion</p> <p>The generation of transgenic reporter zebrafish lines has allowed direct visualization of FGF signalling within the developing embryo. These FGF reporter transgenic lines provide a tool to screen for specific compounds that can distinguish between two conserved members of the RTK family.</p

    Dynamin- and Rab5-Dependent Endocytosis of a Ca<sup>2+</sup>-Activated K<sup>+</sup> Channel, KCa2.3

    Get PDF
    Regulation of the number of ion channels at the plasma membrane is a critical component of the physiological response. We recently demonstrated that the Ca2+-activated K+ channel, KCa2.3 is rapidly endocytosed and enters a Rab35- and EPI64C-dependent recycling compartment. Herein, we addressed the early endocytic steps of KCa2.3 using a combination of fluorescence and biotinylation techniques. We demonstrate that KCa2.3 is localized to caveolin-rich domains of the plasma membrane using fluorescence co-localization, transmission electron microscopy and co-immunoprecipitation (co-IP). Further, in cells lacking caveolin-1, we observed an accumulation of KCa2.3 at the plasma membrane as well as a decreased rate of endocytosis, as assessed by biotinylation. We also demonstrate that KCa2.3 and dynamin II are co-localized following endocytosis as well as demonstrating they are associated by co-IP. Further, expression of K44A dynamin II resulted in a 2-fold increase in plasma membrane KCa2.3 as well as a 3-fold inhibition of endocytosis. Finally, we evaluated the role of Rab5 in the endocytosis of KCa2.3. We demonstrate that expression of a dominant active Rab5 (Q79L) results in the accumulation of newly endocytosed KCa2.3 on to the membrane of the Rab5-induced vacuoles. We confirmed this co-localization by co-IP; demonstrating that KCa2.3 and Rab5 are associated. As expected, if Rab5 is required for the endocytosis of KCa2.3, expression of a dominant negative Rab5 (S34N) resulted in an approximate 2-fold accumulation of KCa2.3 at the plasma membrane. This was confirmed by siRNA-mediated knockdown of Rab5. Expression of the dominant negative Rab5 also resulted in a decreased rate of KCa2.3 endocytosis. These results demonstrate that KCa2.3 is localized to a caveolin-rich domain within the plasma membrane and is endocytosed in a dynamin- and Rab5-dependent manner prior to entering the Rab35/EPI64C recycling compartment and returning to the plasma membrane. © 2012 Gao et al

    Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices

    Get PDF
    Medical devices are an integral part of therapeutic management; despite their importance, they carry a significant risk of microbial infection. Bacterial attachment to a medical device is established by a single, multiplying organism, leading to subsequent biofilm formation. To date, no preventative measures have impacted the incidence of device-related infection. We report the bidirectional covalent coupling of an engineered cationic antimicrobial peptide (eCAP), WLBU2, to various biological surfaces is accomplished. These surfaces included (i) a carbohydrate-based gel matrix, (ii) a complex polymeric plastic bead, and (iii) a silica-calcium phosphate nanocomposite associated with bone reconstruction. WLBU2-conjugated surfaces are shown to retain potent antimicrobial activity related to bacterial surface adhesion. This study provides proof of principle that covalently coating laboratory and bone-regenerating materials with eCAPs has the potential for decreasing infection rates of implanted devices. These findings have important consequences to the patient management component of our current health care technology

    Design Insights to Support the Development of Effective Virtual Reality Nicotine and Vaping Dependency Therapy Scenarios for Future Telehealth

    Get PDF
    Vaping, or the use of electronic nicotine delivery systems (ENDS), has grown rapidly worldwide and is becoming an epidemic among youth in many countries. Invented as a method to help to quit smoking, ENDS are very popular, reaching increasing numbers of users and becoming a health concern. Virtual reality technology (VRT) represents an important tool for conducting addiction-associated interventions, including telemedicine. The design and quality of virtual reality scenarios (VRS) used for VR interventions are fundamental. How well VRS can replicate real-world scenarios has an impact on how realistic the VR immersion experiences are. Thus, VRS development influences therapeutic outcomes. VRT is used for interventions and treatments for smoking-related nicotine addiction but has yet to be validated for vaping-related disorders. Since vaping represents a technological step forward in nicotine consumption, the accurate contextualization of environments surrounding vapers is fundamental for developing advanced VR tools for the prevention and treatment of vaping disorders. Here, we present the results of focus group discussion with young vapers in New Zealand. The knowledge gained from this study will be used to design VRS for cue exposure and reactivity as a first step toward developing effective solutions for vaping disorders using VR interventions and telemedicine

    The AP-2 adaptor β2 appendage scaffolds alternate cargo endocytosis

    Get PDF
    The independently folded appendages of the large α and β2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The β2 subunit appendage contains a common binding site for β-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing β2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 α subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the β2 chain with the closely related endogenous β1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both β1 and β2 subunit transcripts recapitulates the strong α subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive β2-yellow fluorescent protein (YFP) expressed in the β1 + β2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the β appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a β2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a β-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with β2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and β-arrestin binding to a site upon the β2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and β-arrestin depend on a privileged β2 appendage site for proper cargo recruitment to clathrin bud sites

    Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity

    Get PDF
    Aims Obesity is a risk factor for diabetes and cardiovascular diseases, with the incidence of these disorders becoming epidemic. Pathogenic responses to obesity have been ascribed to adipose tissue (AT) dysfunction that promotes bioactive mediator secretion from visceral AT and the initiation of pro-inflammatory events that induce oxidative stress and tissue dysfunction. Current understanding supports that suppressing pro-inflammatory and oxidative events promotes improved metabolic and cardiovascular function. In this regard, electrophilic nitro-fatty acids display pleiotropic anti-inflammatory signalling actions. Methods and results It was hypothesized that high-fat diet (HFD)-induced inflammatory and metabolic responses, manifested by loss of glucose tolerance and vascular dysfunction, would be attenuated by systemic administration of nitrooctadecenoic acid (OA-NO2). Male C57BL/6j mice subjected to a HFD for 20 weeks displayed increased adiposity, fasting glucose, and insulin levels, which led to glucose intolerance and pulmonary hypertension, characterized by increased right ventricular (RV) end-systolic pressure (RVESP) and pulmonary vascular resistance (PVR). This was associated with increased lung xanthine oxidoreductase (XO) activity, macrophage infiltration, and enhanced expression of pro-inflammatory cytokines. Left ventricular (LV) end-diastolic pressure remained unaltered, indicating that the HFD produces pulmonary vascular remodelling, rather than LV dysfunction and pulmonary venous hypertension. Administration of OA-NO2 for the final 6.5 weeks of HFD improved glucose tolerance and significantly attenuated HFD-induced RVESP, PVR, RV hypertrophy, lung XO activity, oxidative stress, and pro-inflammatory pulmonary cytokine levels. Conclusions These observations support that the pleiotropic signalling actions of electrophilic fatty acids represent a therapeutic strategy for limiting the complex pathogenic responses instigated by obesity.Fil: Kelley, Eric E.. University of Pittsburgh; Estados UnidosFil: Baust, Jeff. University of Pittsburgh; Estados UnidosFil: Bonacci, Gustavo Roberto. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Golin Bisello, Franca. University of Pittsburgh; Estados UnidosFil: Devlin, Jason E.. University of Pittsburgh; Estados UnidosFil: Croix, Claudette M. St.. University of Pittsburgh; Estados UnidosFil: Watkins, Simon C.. University of Pittsburgh; Estados UnidosFil: Gor, Sonia. University of Pittsburgh; Estados UnidosFil: Cantu Medellin, Nadiezhda. University of Pittsburgh; Estados UnidosFil: Weidert, Eric R.. University of Pittsburgh; Estados UnidosFil: Frisbee,Jefferson C.. University of Virginia; Estados UnidosFil: Gladwin, Mark T.. University of Pittsburgh; Estados UnidosFil: Champion, Hunter C.. University of Pittsburgh; Estados UnidosFil: Freeman, Bruce A.. University of Pittsburgh; Estados UnidosFil: Khoo, Nicholas K.H.. University of Pittsburgh; Estados Unido

    Transforming Growth Factor β Blocks Tec Kinase Phosphorylation, Ca2+ Influx, and NFATc Translocation Causing Inhibition of T Cell Differentiation

    Get PDF
    Transforming growth factor (TGF)-β inhibits T cell proliferation and differentiation. TGF-β has been shown to inhibit the expression of transcription factors such as GATA-3 and T-bet that play important roles in T cell differentiation. Here we show that TGF-β inhibits T cell differentiation at a more proximal step. An early event during T cell activation is increased intracellular calcium levels. Calcium influx in activated T cells and the subsequent activation of transcription factors such as NFATc, events essential for T cell differentiation, are modulated by the Tec kinases that are downstream of the T cell receptor and CD28. We show that in stimulated CD4+ T cells, TGF-β inhibits phosphorylation and activation of the Tec kinase Itk, increase in intracellular Ca2+ levels, NFATc translocation, and activation of the mitogen-activated protein kinase ERK that together regulate T cell differentiation. Our studies suggest that by inhibiting Itk, and consequently Ca2+ influx, TGF-β limits T cell differentiation along both the Th1 and Th2 lineages

    Receptor activity modifying protein-directed G protein signaling specificity for the calcitonin gene-related peptide family of receptors

    Get PDF
    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through association of the calcitonin receptor-like receptor (CLR) and one of three receptor activitymodifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM) or intermedin/adrenomedullin2 (AM2) is well known to result in a Gαs-mediated increase in cAMP. Here we use modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs_{s} and Gαq_{q} but also identify a Gαi_{i} component to CLR signaling in both yeast and HEK- 293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand and RAMP-dependent signaling bias between Gαs_{s}, Gαi_{i} and Gαq/11_{q/11} pathways. The results are discussed in the context of RAMP interactions probed through molecular modelling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology, and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.This work was supported by the National Heart Foundation of New Zealand (H.W.), the School of Biological Sciences, University of Auckland seed fund (H.W.), the BBSRC (G.L. - BB/M00015X/1), (D.P. - BB/M000176/1), (C.A.R. - BB/M006883/1), a BBSRC Doctoral Training Partnership (M.H. – BB/JO14540/1), an MRC Doctoral Training Partnership (I.W. - MR/J003964/1), a Warwick Impact Fund (C.W., G.L.), a Warwick Research Development Fund (C.W., G.L.) grant number (RD13301) and the Warwick Undergraduate Research Scholarship Scheme (A.S and R.H).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the American Society for Biochemistry and Molecular Biology
    corecore