97 research outputs found

    Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury

    Get PDF
    The cofactor tetrahydrobiopterin (BH4) is a critical regulator of nitric oxide synthase (NOS) function and redox signaling, with reduced BH4 implicated in multiple cardiovascular disease states. In the myocardium, augmentation of BH4 levels can impact on cardiomyocyte function, preventing hypertrophy and heart failure. However, the specific role of endothelial cell BH4 biosynthesis in the coronary circulation and its role in cardiac function and the response to ischemia has yet to be elucidated. Endothelial cell-specific Gch1 knockout mice were generated by crossing Gch1fl/fl with Tie2cre mice, generating Gch1fl/flTie2cre mice and littermate controls. GTP cyclohydrolase protein and BH4 levels were reduced in heart tissues from Gch1fl/flTie2cre mice, localized to endothelial cells, with normal cardiomyocyte BH4. Deficiency in coronary endothelial cell BH4 led to NOS uncoupling, decreased NO bioactivity, and increased superoxide and hydrogen peroxide productions in the hearts of Gch1fl/flTie2cre mice. Under physiological conditions, loss of endothelial cell-specific BH4 led to mild cardiac hypertrophy in Gch1fl/flTie2cre hearts. Endothelial cell BH4 loss was also associated with increased neuronal NOS protein, loss of endothelial NOS protein, and increased phospholamban phosphorylation at serine-17 in cardiomyocytes. Loss of cardiac endothelial cell BH4 led to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia-reperfusion injury. Taken together, these studies reveal a specific role for endothelial cell Gch1/BH4 biosynthesis in cardiac function and the response to cardiac ischemia-reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction and ischemia-reperfusion injury. NEW & NOTEWORTHY We demonstrate a critical role for endothelial cell Gch1/BH4 biosynthesis in coronary vascular function and cardiac function. Loss of cardiac endothelial cell BH4 leads to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia/reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction, ischemia injury, and heart failure

    Oxidation resistance 1 regulates post-translational modifications of peroxiredoxin 2 in the cerebellum

    Get PDF
    Protein aggregation, oxidative and nitrosative stress are etiological factors common to all major neurodegenerative disorders. Therefore, identifying proteins that function at the crossroads of these essential pathways may provide novel targets for therapy. Oxidation resistance 1 (Oxr1) is a protein proven to be neuroprotective against oxidative stress, although the molecular mechanisms involved remain unclear. Here, we demonstrate that Oxr1 interacts with the multifunctional protein, peroxiredoxin 2 (Prdx2), a potent antioxidant enzyme highly expressed in the brain that can also act as a molecular chaperone. Using a combination of in vitro assays and two animal models, we discovered that expression levels of Oxr1 regulate the degree of oligomerization of Prdx2 and also its post-translational modifications (PTMs), specifically suggesting that Oxr1 acts as a functional switch between the antioxidant and chaperone functions of Prdx2. Furthermore, we showed in the Oxr1 knockout mouse that Prdx2 is aberrantly modified by overoxidation and S-nitrosylation in the cerebellum at the presymptomatic stage; this in-turn affected the oligomerization of Prdx2, potentially impeding its normal functions and contributing to the specific cerebellar neurodegeneration in this mouse model

    Adverse events after first and second doses of COVID-19 vaccination in England: a national vaccine surveillance platform self-controlled case series study

    Get PDF
    Objectives: To estimate the incidence of adverse events of interest (AEIs) after receiving their first and second doses of coronavirus disease 2019 (COVID-19) vaccinations, and to report the safety profile differences between the different COVID-19 vaccines. Design: We used a self-controlled case series design to estimate the relative incidence (RI) of AEIs reported to the Oxford-Royal College of General Practitioners national sentinel network. We compared the AEIs that occurred seven days before and after receiving the COVID-19 vaccinations to background levels between 1 October 2020 and 12 September 2021. Setting: England, UK. Participants: Individuals experiencing AEIs after receiving first and second doses of COVID-19 vaccines. Main outcome measures: AEIs determined based on events reported in clinical trials and in primary care during post-license surveillance. Results: A total of 7,952,861 individuals were vaccinated with COVID-19 vaccines within the study period. Among them, 781,200 individuals (9.82%) presented to general practice with 1,482,273 AEIs. Within the first seven days post-vaccination, 4.85% of all the AEIs were reported. There was a 3–7% decrease in the overall RI of AEIs in the seven days after receiving both doses of Pfizer-BioNTech BNT162b2 (RI = 0.93; 95% CI: 0.91–0.94) and 0.96; 95% CI: 0.94–0.98), respectively) and Oxford-AstraZeneca ChAdOx1 (RI = 0.97; 95% CI: 0.95–0.98) for both doses), but a 20% increase after receiving the first dose of Moderna mRNA-1273 (RI = 1.20; 95% CI: 1.00–1.44)). Conclusions: COVID-19 vaccines are associated with a small decrease in the incidence of medically attended AEIs. Sentinel networks could routinely report common AEI rates, which could contribute to reporting vaccine safety

    Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine

    Get PDF
    Aims: Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results: Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions: Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases

    Major-Effect Alleles at Relatively Few Loci Underlie Distinct Vernalization and Flowering Variation in Arabidopsis Accessions

    Get PDF
    We have explored the genetic basis of variation in vernalization requirement and response in Arabidopsis accessions, selected on the basis of their phenotypic distinctiveness. Phenotyping of F2 populations in different environments, plus fine mapping, indicated possible causative genes. Our data support the identification of FRI and FLC as candidates for the major-effect QTL underlying variation in vernalization response, and identify a weak FLC allele, caused by a Mutator-like transposon, contributing to flowering time variation in two N. American accessions. They also reveal a number of additional QTL that contribute to flowering time variation after saturating vernalization. One of these was the result of expression variation at the FT locus. Overall, our data suggest that distinct phenotypic variation in the vernalization and flowering response of Arabidopsis accessions is accounted for by variation that has arisen independently at relatively few major-effect loci

    Adverse events following first and second dose COVID-19 vaccination in England, October 2020 to September 2021 : a national vaccine surveillance platform self-controlled case series study

    Get PDF
    Background Post-authorisation vaccine safety surveillance is well established for reporting common adverse events of interest (AEIs) following influenza vaccines, but not for COVID-19 vaccines. Aim To estimate the incidence of AEIs presenting to primary care following COVID-19 vaccination in England, and report safety profile differences between vaccine brands. Methods We used a self-controlled case series design to estimate relative incidence (RI) of AEIs reported to the national sentinel network, the Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub. We compared AEIs (overall and by clinical category) 7 days pre- and post-vaccination to background levels between 1 October 2020 and 12 September 2021. Results Within 7,952,861 records, 781,200 individuals (9.82%) presented to general practice with 1,482,273 AEIs, 4.85% within 7 days post-vaccination. Overall, medically attended AEIs decreased post-vaccination against background levels. There was a 3–7% decrease in incidence within 7 days after both doses of Comirnaty (RI: 0.93; 95% CI: 0.91–0.94 and RI: 0.96; 95% CI: 0.94–0.98, respectively) and Vaxzevria (RI: 0.97; 95% CI: 0.95–0.98). A 20% increase was observed after one dose of Spikevax (RI: 1.20; 95% CI: 1.00–1.44). Fewer AEIs were reported as age increased. Types of AEIs, e.g. increased neurological and psychiatric conditions, varied between brands following two doses of Comirnaty (RI: 1.41; 95% CI: 1.28–1.56) and Vaxzevria (RI: 1.07; 95% CI: 0.97–1.78). Conclusion COVID-19 vaccines are associated with a small decrease in medically attended AEI incidence. Sentinel networks could routinely report common AEI rates, contributing to reporting vaccine safety

    Adverse events after first and second doses of COVID-19 vaccination in England: a national vaccine surveillance platform self-controlled case series study

    Get PDF
    Objectives To estimate the incidence of adverse events of interest (AEIs) after receiving their first and second doses of coronavirus disease 2019 (COVID-19) vaccinations, and to report the safety profile differences between the different COVID-19 vaccines. Design We used a self-controlled case series design to estimate the relative incidence (RI) of AEIs reported to the Oxford-Royal College of General Practitioners national sentinel network. We compared the AEIs that occurred seven days before and after receiving the COVID-19 vaccinations to background levels between 1 October 2020 and 12 September 2021. Setting England, UK. Participants Individuals experiencing AEIs after receiving first and second doses of COVID-19 vaccines. Main outcome measures AEIs determined based on events reported in clinical trials and in primary care during post-license surveillance. Results A total of 7,952,861 individuals were vaccinated with COVID-19 vaccines within the study period. Among them, 781,200 individuals (9.82%) presented to general practice with 1,482,273 AEIs. Within the first seven days post-vaccination, 4.85% of all the AEIs were reported. There was a 3–7% decrease in the overall RI of AEIs in the seven days after receiving both doses of Pfizer-BioNTech BNT162b2 (RI = 0.93; 95% CI: 0.91–0.94) and 0.96; 95% CI: 0.94–0.98), respectively) and Oxford-AstraZeneca ChAdOx1 (RI = 0.97; 95% CI: 0.95–0.98) for both doses), but a 20% increase after receiving the first dose of Moderna mRNA-1273 (RI = 1.20; 95% CI: 1.00–1.44)). Conclusions COVID-19 vaccines are associated with a small decrease in the incidence of medically attended AEIs. Sentinel networks could routinely report common AEI rates, which could contribute to reporting vaccine safety
    • …
    corecore