6,230 research outputs found

    Placing Confidence Limits on Polarization Measurements

    Full text link
    The determination of the true source polarization given a set of measurements is complicated by the requirement that the polarization always be positive. This positive bias also hinders construction of upper limits, uncertainties, and confidence regions, especially at low signal-to-noise levels. We generate the likelihood function for linear polarization measurements and use it to create confidence regions and upper limits. This is accomplished by integrating the likelihood function over the true polarization (parameter space), rather than the measured polarization (data space). These regions are valid for both low and high signal-to-noise measurements.Comment: 8 pages, 3 figures, 1 table, submitted to PAS

    Twist operator correlation functions in O(n) loop models

    Full text link
    Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n=0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c=0. In this limit the twist operator plays the role of a zero weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null-states, we derive a new explicit result for the probabilities that an SLE_{8/3} wind in various ways about two points in the upper half plane, e.g. that the SLE passes to the left of both points. The collection of c=0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We provide evidence that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules.Comment: 18 pages, 8 figure

    Single top or bottom production associated with a scalar in \gamma p collision as a probe of topcolor-assisted technicolor

    Full text link
    In the framework of the topcolor-assisted technicolor (TC2) models, we study the productions of a single top or bottom quark associated with a scalar in \gamma-p collision, which proceed via the subprocesses c\gamma -> t\pi_t^0, c\gamma -> t h_t^0 and c\gamma -> b\pi^+_t mediated by the anomalous top or bottom coupling tc\pi_t^0, tch_t^0 and bc\pi_t^+. These productions, while extremely suppressed in the Standard Model, are found to be significantly enhanced in the large part of the TC2 parameter space, especially the production via c\gamma -> b\pi^+ can have a cross section of 100 fb, which may be accessible and allow for a test of the TC2 models.Comment: 13 pages, 4 figures, comments and references adde

    Effects of nonorthogonality in the time-dependent current through tunnel junctions

    Full text link
    A theoretical technique which allows to include contributions from non-orthogonality of the electron states in the leads connected to a tunneling junction is derived. The theory is applied to a single barrier tunneling structure and a simple expression for the time-dependent tunneling current is derived showing explicit dependence of the overlap. The overlap proves to be necessary for a better quantitative description of the tunneling current, and our theory reproduces experimental results substantially better compared to standard approaches.Comment: 4 pages, 1 table, 1 figur

    Inhomogeneous broadening of tunneling conductance in double quantum wells

    Full text link
    The lineshape of the tunneling conductance in double quantum wells with a large-scale roughness of heterointerfaces is investigated. Large-scale variations of coupled energy levels and scattering due to the short-range potential are taken into account. The interplay between the inhomogeneous broadening, induced by the non-screened part of large-scale potential, and the homogeneous broadening due to the scattering by short-range potentials is considered. It is shown that the large inhomogeneous broadening can be strongly modified by nonlocal effects involved in the proposed mechanism of inhomogeneity. Related change of lineshape of the resonant tunneling conductance between Gaussian and Lorentzian peaks is described. The theoretical results agree quite well with experimental data.Comment: 11 pages, 5 figure

    Color Detection Using Chromophore-Nanotube Hybrid Devices

    Get PDF
    We present a nanoscale color detector based on a single-walled carbon nanotube functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrate the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggest that upon photoabsorption, the chromophores isomerize from the ground state trans configuration to the excited state cis configuration, accompanied by a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations are used to study the chromophore-nanotube hybrids, and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments support the notion of dipole changes as the optical detection mechanism.Comment: Accepted by Nano Letter

    The Fourth Element: Characteristics, Modelling, and Electromagnetic Theory of the Memristor

    Get PDF
    In 2008, researchers at HP Labs published a paper in {\it Nature} reporting the realisation of a new basic circuit element that completes the missing link between charge and flux-linkage, which was postulated by Leon Chua in 1971. The HP memristor is based on a nanometer scale TiO2_2 thin-film, containing a doped region and an undoped region. Further to proposed applications of memristors in artificial biological systems and nonvolatile RAM (NVRAM), they also enable reconfigurable nanoelectronics. Moreover, memristors provide new paradigms in application specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs). A significant reduction in area with an unprecedented memory capacity and device density are the potential advantages of memristors for Integrated Circuits (ICs). This work reviews the memristor and provides mathematical and SPICE models for memristors. Insight into the memristor device is given via recalling the quasi-static expansion of Maxwell's equations. We also review Chua's arguments based on electromagnetic theory.Comment: 28 pages, 14 figures, Accepted as a regular paper - the Proceedings of Royal Society
    corecore