11,550 research outputs found
Indexed keyed connection Patent
Standard coupling design for mass productio
Ultra-dense phosphorus in germanium delta-doped layers
Phosphorus (P) in germanium (Ge) delta-doped layers are fabricated in
ultra-high vacuum by adsorption of phosphine molecules onto an atomically flat
clean Ge(001) surface followed by thermal incorporation of P into the lattice
and epitaxial Ge overgrowth by molecular beam epitaxy. Structural and
electrical characterizations show that P atoms are confined, with minimal
diffusion, into an ultra-narrow 2-nm-wide layer with an electrically-active
sheet carrier concentration of 4x10^13 cm-2 at 4.2 K. These results open up the
possibility of ultra-narrow source/drain regions with unprecedented carrier
densities for Ge n-channel field effect transistors
Spontaneous breaking of time reversal symmetry in strongly interacting two dimensional electron layers in silicon and germanium
We report experimental evidence of a remarkable spontaneous time reversal
symmetry breaking in two dimensional electron systems formed by atomically
confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si)
and germanium (Ge). Weak localization corrections to the conductivity and the
universal conductance fluctuations were both found to decrease rapidly with
decreasing doping in the Si:P and Ge:P layers, suggesting an effect
driven by Coulomb interactions. In-plane magnetotransport measurements indicate
the presence of intrinsic local spin fluctuations at low doping, providing a
microscopic mechanism for spontaneous lifting of the time reversal symmetry.
Our experiments suggest the emergence of a new many-body quantum state when two
dimensional electrons are confined to narrow half-filled impurity bands
Ensuring health and food safety from rapidly expanding wastewater irrigation in South Asia: BMZ final report 2005-2008
Wastewater irrigation / Institutions / Public health / Health hazards / Diseases / Cropping systems / Vegetables / Fodder / Livestock / Risk assessment / Economic evaluation / Surveys / GIS / Research priorities / South Asia / India / Pakistan / Hyderabad / Faisalabad / Musi River
Combinatorial Bounds and Characterizations of Splitting Authentication Codes
We present several generalizations of results for splitting authentication
codes by studying the aspect of multi-fold security. As the two primary
results, we prove a combinatorial lower bound on the number of encoding rules
and a combinatorial characterization of optimal splitting authentication codes
that are multi-fold secure against spoofing attacks. The characterization is
based on a new type of combinatorial designs, which we introduce and for which
basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications
Long-term deficits in cortical circuit function after asphyxial cardiac arrest and resuscitation in developing rats
AbstractCardiac arrest is a common cause of global hypoxic-ischemic brain injury. Poor neurologic outcome among cardiac arrest survivors results not only from direct cellular injury but also from subsequent long-term dysfunction of neuronal circuits. Here, we investigated the long-term impact of cardiac arrest during development on the function of cortical layer IV (L4) barrel circuits in the rat primary somatosensory cortex. We used multielectrode single-neuron recordings to examine responses of presumed excitatory L4 barrel neurons to controlled whisker stimuli in adult (8 ± 2-mo-old) rats that had undergone 9 min of asphyxial cardiac arrest and resuscitation during the third postnatal week. Results indicate that responses to deflections of the topographically appropriate principal whisker (PW) are smaller in magnitude in cardiac arrest survivors than in control rats. Responses to adjacent whisker (AW) deflections are similar in magnitude between the two groups. Because of a disproportionate decrease in PW-evoked responses, receptive fields of L4 barrel neurons are less spatially focused in cardiac arrest survivors than in control rats. In addition, spiking activity among L4 barrel neurons is more correlated in cardiac arrest survivors than in controls. Computational modeling demonstrates that experimentally observed disruptions in barrel circuit function after cardiac arrest can emerge from a balanced increase in background excitatory and inhibitory conductances in L4 neurons. Experimental and modeling data together suggest that after a hypoxic-ischemic insult, cortical sensory circuits are less responsive and less spatially tuned. Modulation of these deficits may represent a therapeutic approach to improving neurologic outcome after cardiac arrest.</jats:p
Clustering Memes in Social Media
The increasing pervasiveness of social media creates new opportunities to
study human social behavior, while challenging our capability to analyze their
massive data streams. One of the emerging tasks is to distinguish between
different kinds of activities, for example engineered misinformation campaigns
versus spontaneous communication. Such detection problems require a formal
definition of meme, or unit of information that can spread from person to
person through the social network. Once a meme is identified, supervised
learning methods can be applied to classify different types of communication.
The appropriate granularity of a meme, however, is hardly captured from
existing entities such as tags and keywords. Here we present a framework for
the novel task of detecting memes by clustering messages from large streams of
social data. We evaluate various similarity measures that leverage content,
metadata, network features, and their combinations. We also explore the idea of
pre-clustering on the basis of existing entities. A systematic evaluation is
carried out using a manually curated dataset as ground truth. Our analysis
shows that pre-clustering and a combination of heterogeneous features yield the
best trade-off between number of clusters and their quality, demonstrating that
a simple combination based on pairwise maximization of similarity is as
effective as a non-trivial optimization of parameters. Our approach is fully
automatic, unsupervised, and scalable for real-time detection of memes in
streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM'13), 201
Hysteresis in the quantum Hall regimes in electron double quantum well structures
We present in this paper experimental results on the transport hysteresis in
electron double quantum well structures. Exploring the measurement technique of
fixing the magnetic field and sweeping a front gate voltage (Vg), we are able
to study the hysteresis by varying the top layer Landau level fillings while
maintaining a relatively constant filling factor in the bottom layer, allowing
us to tackle the question of the sign of Rxx(up)-Rxx(down), where Rxx(up) is
the magnetoresistance when Vg is swept up and Rxx(down) when Vg swept down.
Furthermore, we observe that hysteresis is generally stronger in the even
integer quantum Hall effect (IQHE) regime than in the odd-IQHE regime. This, we
argue, is due to a larger energy gap for an even-IQHE state, determined by the
Landau level separation, than that for an odd-IQHE state, determined by the
Zeeman splitting
- …