155 research outputs found

    Deconstruction of the Trap Model for the New Conducting State in 2D

    Full text link
    A key prediction of the trap model for the new conducting state in 2D is that the resistivity turns upwards below some characteristic temperature, TminT_{\rm min}. Altshuler, Maslov, and Pudalov have argued that the reason why no upturn has been observed for the low density conducting samples is that the temperature was not low enough in the experiments. We show here that TminT_{\rm min} within the Altshuler, Maslov, and Pudalov trap model actually increases with decreasing density, contrary to their claim. Consequently, the trap model is not consistent with the experimental trends.Comment: Published version of Deconstructio

    Dephasing and Metal-Insulator Transition

    Full text link
    The metal-insulator transition (MIT) observed in two-dimensional (2D) systems is apparently contradictory to the well known scaling theory of localization. By investigating the conductance of disordered one-dimensional systems with a finite phase coherence length, we show that by changing the phase coherence length or the localization length, it is possible to observe the transition from insulator-like behavior to metal-like behavior, and the transition is a crossover between the quantum and classical regimes. The resemblance between our calculated results and the experimental findings of 2D MIT suggests that the observed metallic phase could be the result of a finite dephasing rate.Comment: 10 figures, to be published in Phys. Rev. B63, Jan. 15, (2000

    Two-Component Scaling near the Metal-Insulator Bifurcation in Two-Dimensions

    Full text link
    We consider a two-component scaling picture for the resistivity of two-dimensional (2D) weakly disordered interacting electron systems at low temperature with the aim of describing both the vicinity of the bifurcation and the low resistance metallic regime in the same framework. We contrast the essential features of one-component and two-component scaling theories. We discuss why the conventional lowest order renormalization group equations do not show a bifurcation in 2D, and a semi-empirical extension is proposed which does lead to bifurcation. Parameters, including the product zνz\nu, are determined by least squares fitting to experimental data. An excellent description is obtained for the temperature and density dependence of the resistance of silicon close to the separatrix. Implications of this two-component scaling picture for a quantum critical point are discussed.Comment: 7 pages, 1 figur

    Spin polarization of strongly interacting 2D electrons: the role of disorder

    Full text link
    In high-mobility silicon MOSFET's, the gmg^*m^* inferred indirectly from magnetoconductance and magnetoresistance measurements with the assumption that gμBHs=2EFg^*\mu_BH_s=2E_F are in surprisingly good agreement with gmg^*m^* obtained by direct measurement of Shubnikov-de Haas oscillations. The enhanced susceptibility χ(gm)\chi^* \propto (g^*m^*) exhibits critical behavior of the form χ(nn0)α\chi^* \propto (n - n_0)^{-\alpha}. We examine the significance of the field scale HsH_s derived from transport measurements, and show that this field signals the onset of full spin polarization only in the absence of disorder. Our results suggest that disorder becomes increasingly important as the electron density is reduced toward the transition.Comment: 4 pages, 3 figure

    Compressibility of a two-dimensional hole gas in tilted magnetic field

    Full text link
    We have measured compressibility of a two-dimensional hole gas in p-GaAs/AlGaAs heterostructure, grown on a (100) surface, in the presence of a tilted magnetic field. It turns out that the parallel component of magnetic field affects neither the spin splitting nor the density of states. We conclude that: (a) g-factor in the parallel magnetic field is nearly zero in this system; and (b) the level of the disorder potential is not sensitive to the parallel component of the magnetic field

    Ground state properties of the 2D disordered Hubbard model

    Full text link
    We study the ground state of the two-dimensional (2D) disordered Hubbard model by means of the projector quantum Monte Carlo (PQMC) method. This approach allows us to investigate the ground state properties of this model for lattice sizes up to 10×1010 \times 10, at quarter filling, for a broad range of interaction and disorder strengths. Our results show that the ground state of this system of spin-1/2 fermions remains localised in the presence of the short-ranged Hubbard interaction.Comment: 7 pages, 9 figure

    Interaction Corrections to Two-Dimensional Hole Transport in Large rsr_{s} Limit

    Full text link
    The metallic conductivity of dilute two-dimensional holes in a GaAs HIGFET (Heterojunction Insulated-Gate Field-Effect Transistor) with extremely high mobility and large rsr_{s} is found to have a linear dependence on temperature, consistent with the theory of interaction corrections in the ballistic regime. Phonon scattering contributions are negligible in the temperature range of our interest, allowing comparison between our measured data and theory without any phonon subtraction. The magnitude of the Fermi liquid interaction parameter F0σF_{0}^{\sigma} determined from the experiment, however, decreases with increasing rsr_{s} for r_{s}\agt22, a behavior unexpected from existing theoretical calculations valid for small rsr_{s}.Comment: 6 pages, 4 figure

    The relative importance of electron-electron interactions compared to disorder in the two-dimensional "metallic" state

    Full text link
    The effect of substrate bias and surface gate voltage on the low temperature resistivity of a Si-MOSFET is studied for electron concentrations where the resistivity increases with increasing temperature. This technique offers two degrees of freedom for controlling the electron concentration and the device mobility, thereby providing a means to evaluate the relative importance of electron-electron interactions and disorder in this so-called ``metallic'' regime. For temperatures well below the Fermi temperature, the data obey a scaling law where the disorder parameter (kFlk_{\rm{F}}l), and not the concentration, appears explicitly. This suggests that interactions, although present, do not alter the Fermi-liquid properties of the system fundamentally. Furthermore, this experimental observation is reproduced in results of calculations based on temperature-dependent screening, in the context of Drude-Boltzmann theory.Comment: 5 pages, 6 figure

    Two-Dimensional Wigner Crystal in Anisotropic Semiconductor

    Full text link
    We investigate the effect of mass anisotropy on the Wigner crystallization transition in a two-dimensional (2D) electron gas. The static and dynamical properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais lattices in the presence of anisotropic mass, as may be obtainable in Si MOSFETs with (110) surface. By studying the stability of all possible lattices, we find significant change in the crystal structure and melting density of the electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure

    The Parallel Magnetoconductance of Interacting Electrons in a Two Dimensional Disordered System

    Full text link
    The transport properties of interacting electrons for which the spin degree of freedom is taken into account are numerically studied for small two dimensional diffusive clusters. On-site electron-electron interactions tend to delocalize the electrons, while long-range interactions enhance localization. On careful examination of the transport properties, we reach the conclusion that it does not show a two dimensional metal insulator transition driven by interactions. A parallel magnetic field leads to enhanced resistivity, which saturates once the electrons become fully spin polarized. The strength of the magnetic field for which the resistivity saturates decreases as electron density goes down. Thus, the numerical calculations capture some of the features seen in recent experimental measurements of parallel magnetoconductance.Comment: 10 pages, 6 figure
    corecore