155 research outputs found
Deconstruction of the Trap Model for the New Conducting State in 2D
A key prediction of the trap model for the new conducting state in 2D is that
the resistivity turns upwards below some characteristic temperature, . Altshuler, Maslov, and Pudalov have argued that the reason why no upturn
has been observed for the low density conducting samples is that the
temperature was not low enough in the experiments. We show here that within the Altshuler, Maslov, and Pudalov trap model actually increases
with decreasing density, contrary to their claim. Consequently, the trap model
is not consistent with the experimental trends.Comment: Published version of Deconstructio
Dephasing and Metal-Insulator Transition
The metal-insulator transition (MIT) observed in two-dimensional (2D) systems
is apparently contradictory to the well known scaling theory of localization.
By investigating the conductance of disordered one-dimensional systems with a
finite phase coherence length, we show that by changing the phase coherence
length or the localization length, it is possible to observe the transition
from insulator-like behavior to metal-like behavior, and the transition is a
crossover between the quantum and classical regimes. The resemblance between
our calculated results and the experimental findings of 2D MIT suggests that
the observed metallic phase could be the result of a finite dephasing rate.Comment: 10 figures, to be published in Phys. Rev. B63, Jan. 15, (2000
Two-Component Scaling near the Metal-Insulator Bifurcation in Two-Dimensions
We consider a two-component scaling picture for the resistivity of
two-dimensional (2D) weakly disordered interacting electron systems at low
temperature with the aim of describing both the vicinity of the bifurcation and
the low resistance metallic regime in the same framework. We contrast the
essential features of one-component and two-component scaling theories. We
discuss why the conventional lowest order renormalization group equations do
not show a bifurcation in 2D, and a semi-empirical extension is proposed which
does lead to bifurcation. Parameters, including the product , are
determined by least squares fitting to experimental data. An excellent
description is obtained for the temperature and density dependence of the
resistance of silicon close to the separatrix. Implications of this
two-component scaling picture for a quantum critical point are discussed.Comment: 7 pages, 1 figur
Spin polarization of strongly interacting 2D electrons: the role of disorder
In high-mobility silicon MOSFET's, the inferred indirectly from
magnetoconductance and magnetoresistance measurements with the assumption that
are in surprisingly good agreement with obtained by
direct measurement of Shubnikov-de Haas oscillations. The enhanced
susceptibility exhibits critical behavior of the form
. We examine the significance of the field
scale derived from transport measurements, and show that this field
signals the onset of full spin polarization only in the absence of disorder.
Our results suggest that disorder becomes increasingly important as the
electron density is reduced toward the transition.Comment: 4 pages, 3 figure
Compressibility of a two-dimensional hole gas in tilted magnetic field
We have measured compressibility of a two-dimensional hole gas in
p-GaAs/AlGaAs heterostructure, grown on a (100) surface, in the presence of a
tilted magnetic field. It turns out that the parallel component of magnetic
field affects neither the spin splitting nor the density of states. We conclude
that: (a) g-factor in the parallel magnetic field is nearly zero in this
system; and (b) the level of the disorder potential is not sensitive to the
parallel component of the magnetic field
Ground state properties of the 2D disordered Hubbard model
We study the ground state of the two-dimensional (2D) disordered Hubbard
model by means of the projector quantum Monte Carlo (PQMC) method. This
approach allows us to investigate the ground state properties of this model for
lattice sizes up to , at quarter filling, for a broad range of
interaction and disorder strengths. Our results show that the ground state of
this system of spin-1/2 fermions remains localised in the presence of the
short-ranged Hubbard interaction.Comment: 7 pages, 9 figure
Interaction Corrections to Two-Dimensional Hole Transport in Large Limit
The metallic conductivity of dilute two-dimensional holes in a GaAs HIGFET
(Heterojunction Insulated-Gate Field-Effect Transistor) with extremely high
mobility and large is found to have a linear dependence on temperature,
consistent with the theory of interaction corrections in the ballistic regime.
Phonon scattering contributions are negligible in the temperature range of our
interest, allowing comparison between our measured data and theory without any
phonon subtraction. The magnitude of the Fermi liquid interaction parameter
determined from the experiment, however, decreases with
increasing for r_{s}\agt22, a behavior unexpected from existing
theoretical calculations valid for small .Comment: 6 pages, 4 figure
The relative importance of electron-electron interactions compared to disorder in the two-dimensional "metallic" state
The effect of substrate bias and surface gate voltage on the low temperature
resistivity of a Si-MOSFET is studied for electron concentrations where the
resistivity increases with increasing temperature. This technique offers two
degrees of freedom for controlling the electron concentration and the device
mobility, thereby providing a means to evaluate the relative importance of
electron-electron interactions and disorder in this so-called ``metallic''
regime. For temperatures well below the Fermi temperature, the data obey a
scaling law where the disorder parameter (), and not the
concentration, appears explicitly. This suggests that interactions, although
present, do not alter the Fermi-liquid properties of the system fundamentally.
Furthermore, this experimental observation is reproduced in results of
calculations based on temperature-dependent screening, in the context of
Drude-Boltzmann theory.Comment: 5 pages, 6 figure
Two-Dimensional Wigner Crystal in Anisotropic Semiconductor
We investigate the effect of mass anisotropy on the Wigner crystallization
transition in a two-dimensional (2D) electron gas. The static and dynamical
properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais
lattices in the presence of anisotropic mass, as may be obtainable in Si
MOSFETs with (110) surface. By studying the stability of all possible lattices,
we find significant change in the crystal structure and melting density of the
electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure
The Parallel Magnetoconductance of Interacting Electrons in a Two Dimensional Disordered System
The transport properties of interacting electrons for which the spin degree
of freedom is taken into account are numerically studied for small two
dimensional diffusive clusters. On-site electron-electron interactions tend to
delocalize the electrons, while long-range interactions enhance localization.
On careful examination of the transport properties, we reach the conclusion
that it does not show a two dimensional metal insulator transition driven by
interactions. A parallel magnetic field leads to enhanced resistivity, which
saturates once the electrons become fully spin polarized. The strength of the
magnetic field for which the resistivity saturates decreases as electron
density goes down. Thus, the numerical calculations capture some of the
features seen in recent experimental measurements of parallel
magnetoconductance.Comment: 10 pages, 6 figure
- …