486 research outputs found

    Constraining Spin-One Color-Octet Resonances Using CDF and ATLAS Data

    Full text link
    In this paper, we study the production of spin-one color-octet resonances (colorons) at hadron colliders in a model independent way. We use dijets data measured by CDF (at \sqrt{s}=1.96 TeV and L=1.131/pb)andATLAS(ats=7 1/pb) and ATLAS (at \sqrt{s}=7 TeV and L=315 1/nb) collaborations at the Tevatron and the LHC respetively to impose limits on the coupling of colorons to fermions. We show that CDF data still produce the more stringent limits on the coloron coupling constant.Comment: Version accepted for publication in EPJC. Two paragraphs expanded and new references adde

    Flavor Physics and the Triviality Bound on the Higgs Mass

    Get PDF
    The triviality of the scalar sector of the standard one-doublet Higgs model implies that this model is only an effective low-energy theory valid below some cut-off scale Λ\Lambda. The underlying high-energy theory must include flavor dynamics at a scale of order Λ\Lambda or greater in order to give rise to the different Yukawa couplings of the Higgs to ordinary fermions. This flavor dynamics will generically produce flavor-changing neutral currents and non-universal corrections to Z -> b b-bar. We show that the experimental constraints on the neutral D-meson mass difference imply that Λ\Lambda must be greater than of order 21 TeV. We also discuss bounds on Λ\Lambda from the constraints on extra contributions to the K_L - K_S mass difference and to the coupling of the Z boson to b-quarks. For theories defined about the infrared-stable Gaussian fixed-point, we estimate that this lower bound on Λ\Lambda yields an upper bound of approximately 460 GeV on the Higgs boson's mass, independent of the regulator chosen to define the theory.Comment: 11 pages, 2 embedded figures, LaTeX; references and discussion of CP violation adde

    Topped MAC with extra dimensions?

    Full text link
    We perform the most attractive channel (MAC) analysis in the top mode standard model with TeV-scale extra dimensions, where the standard model gauge bosons and the third generation of quarks and leptons are put in D(=6,8,10,...) dimensions. In such a model, bulk gauge couplings rapidly grow in the ultraviolet region. In order to make the scenario viable, only the attractive force of the top condensate should exceed the critical coupling, while other channels such as the bottom and tau condensates should not. We then find that the top condensate can be the MAC for D=8, whereas the tau condensation is favored for D=6. The analysis for D=10 strongly depends on the regularization scheme. We predict masses of the top (m_t) and the Higgs (m_H), m_t=172-175 GeV and m_H=176-188 GeV for D=8, based on the renormalization group for the top Yukawa and Higgs quartic couplings with the compositeness conditions at the scale where the bulk top condenses. The Higgs boson in such a characteristic mass range will be immediately discovered in H -> WW^(*)/ZZ^(*) once the LHC starts.Comment: REVTEX4, 24 pages, 21 figures, to appear in PRD. The title is changed in PRD. One reference added, typos correcte

    Minimal Composite Higgs Model with Light Bosons

    Full text link
    We analyze a composite Higgs model with the minimal content that allows a light Standard-Model-like Higgs boson, potentially just above the current LEP limit. The Higgs boson is a bound state made up of the top quark and a heavy vector-like quark. The model predicts that only one other bound state may be lighter than the electroweak scale, namely a CP-odd neutral scalar. Several other composite scalars are expected to have masses in the TeV range. If the Higgs decay into a pair of CP-odd scalars is kinematically open, then this decay mode is dominant, with important implications for Higgs searches. The lower bound on the CP-odd scalar mass is loose, in some cases as low as ∌\sim 100 MeV, being set only by astrophysical constraints.Comment: 33 pages, latex. Corrections in eqs. 3.21, 3.23, 4.1, 4.5-10. One figure adde

    Dynamical chiral symmetry breaking in gauge theories with extra dimensions

    Get PDF
    We investigate dynamical chiral symmetry breaking in vector-like gauge theories in DD dimensions with (D−4D-4) compactified extra dimensions, based on the gap equation (Schwinger-Dyson equation) and the effective potential for the bulk gauge theories within the improved ladder approximation. The non-local gauge fixing method is adopted so as to keep the ladder approximation consistent with the Ward-Takahashi identities. Using the one-loop MSˉ\bar{\rm MS} gauge coupling of the truncated KK effective theory which has a nontrivial ultraviolet fixed point (UV-FP) g∗g_* for the (dimensionless) bulk gauge coupling g^{\hat g}, we find that there exists a critical number of flavors, NfcritN_f^{\rm crit} (≃4.2,1.8\simeq 4.2, 1.8 for D=6,8D=6, 8 for SU(3) gauge theory): For Nf>NfcritN_f > N_f^{\rm crit}, the dynamical chiral symmetry breaking takes place not only in the ``strong-coupling phase'' (g^>g∗{\hat g} >g_*) but also in the ``weak-coupling phase'' (g^<g∗{\hat g} <g_*) when the cutoff is large enough. For Nf<NfcritN_f < N_f^{\rm crit}, on the other hand, only the strong-coupling phase is a broken phase and we can formally define a continuum (infinite cutoff) limit, so that the physics is insensitive to the cutoff in this case. We also perform a similar analysis using the one-loop ``effective gauge coupling''. We find the NfcritN_f^{\rm crit} turns out to be a value similar to that of the MSˉ\bar{\rm MS} case, notwithstanding the enhancement of the coupling compared with that of the MSˉ\bar{\rm MS}.Comment: REVTEX4, 38 pages, 18 figures. The abstract is shortened; version to be published in Phys. Rev.

    Problematising parent–professional partnerships in education

    Get PDF
    The value of, and need for, parent–professional partnerships is an unchallenged mantra within policy relating to ‘special educational needs’. In spite of this, partnerships continue to be experienced as problematic by both parents and professionals. This paper brings together the different perspectives of two disability researchers: one a parent of a disabled child while the other was a teacher for 20 years of children with the label autism. The paper deconstructs the concept of partnership and then, drawing on the expertise of parents, suggests how enabling and empowering parent–professional relationships might be achieved

    Problematising parent–professional partnerships in education

    Get PDF
    The value of, and need for, parent–professional partnerships is an unchallenged mantra within policy relating to ‘special educational needs’. In spite of this, partnerships continue to be experienced as problematic by both parents and professionals. This paper brings together the different perspectives of two disability researchers: one a parent of a disabled child while the other was a teacher for 20 years of children with the label autism. The paper deconstructs the concept of partnership and then, drawing on the expertise of parents, suggests how enabling and empowering parent–professional relationships might be achieved

    Single Top Production as a Window to Physics Beyond the Standard Model

    Get PDF
    Production of single top quarks at a high energy hadron collider is studied as a means to identify physics beyond the standard model related to the electroweak symmetry breaking. The sensitivity of the ss-channel W∗W^* mode, the tt-channel WW-gluon fusion mode, and the \tw mode to various possible forms of new physics is assessed, and it is found that the three modes are sensitive to different forms of new physics, indicating that they provide complimentary information about the properties of the top quark. Polarization observables are also considered, and found to provide potentially useful information about the structure of the interactions of top.Comment: References added and minor discussion improvements; results unchanged; Version to be published in PR
    • 

    corecore