3,663 research outputs found
Frequency-Tunable Josephson Junction Resonator for Quantum Computing
We have fabricated and measured a high-Q Josephson junction resonator with a
tunable resonance frequency. A dc magnetic flux allows the resonance frequency
to be changed by over 10 %. Weak coupling to the environment allows a quality
factor of 7000 when on average less than one photon is stored in the
resonator. At large photon numbers, the nonlinearity of the Josephson junction
creates two stable oscillation states. This resonator can be used as a tool for
investigating the quality of Josephson junctions in qubits below the single
photon limit, and can be used as a microwave qubit readout at high photon
numbers.Comment: 3 pages, 5 figure
Distribution of TT virus (TTV), TTV-like minivirus, and related viruses in humans and nonhuman primates
AbstractTT virus (TTV) and TTV-like minivirus (TLMV) are small DNA viruses with single-stranded, closed circular, antisense genomes infecting man. Despite their extreme sequence heterogeneity (>50%), a highly conserved region in the untranslated region (UTR) allows both viruses to be amplified by polymerase chain reaction (PCR). TTV/TLMV infection was detected in 88 of 100 human plasma samples; amplified sequences were differentiated into TTV and TLMV by analysis of melting profiles, showing that both viruses were similarly prevalent. PCR with UTR primers also detected frequent infection with TTV/TLMV-related viruses in a wide range of apes (chimpanzees, gorillas, orangutans, gibbons) and African monkey species (mangabeys, drills, mandrills). These findings support the hypothesis for the co-evolution of TTV-like viruses with their hosts over the period of primate speciation, potentially analogous to the evolution of primate herpesviruses
Demonstration of efficient nonreciprocity in a microwave optomechanical circuit
The ability to engineer nonreciprocal interactions is an essential tool in
modern communication technology as well as a powerful resource for building
quantum networks. Aside from large reverse isolation, a nonreciprocal device
suitable for applications must also have high efficiency (low insertion loss)
and low output noise. Recent theoretical and experimental studies have shown
that nonreciprocal behavior can be achieved in optomechanical systems, but
performance in these last two attributes has been limited. Here we demonstrate
an efficient, frequency-converting microwave isolator based on the
optomechanical interactions between electromagnetic fields and a mechanically
compliant vacuum gap capacitor. We achieve simultaneous reverse isolation of
more than 20 dB and insertion loss less than 1.5 dB over a bandwidth of 5 kHz.
We characterize the nonreciprocal noise performance of the device, observing
that the residual thermal noise from the mechanical environments is routed
solely to the input of the isolator. Our measurements show quantitative
agreement with a general coupled-mode theory. Unlike conventional isolators and
circulators, these compact nonreciprocal devices do not require a static
magnetic field, and they allow for dynamic control of the direction of
isolation. With these advantages, similar devices could enable programmable,
high-efficiency connections between disparate nodes of quantum networks, even
efficiently bridging the microwave and optical domains.Comment: 9 pages, 6 figure
Improving broadband displacement detection with quantum correlations
Interferometers enable ultrasensitive measurement in a wide array of
applications from gravitational wave searches to force microscopes. The role of
quantum mechanics in the metrological limits of interferometers has a rich
history, and a large number of techniques to surpass conventional limits have
been proposed. In a typical measurement configuration, the tradeoff between the
probe's shot noise (imprecision) and its quantum backaction results in what is
known as the standard quantum limit (SQL). In this work we investigate how
quantum correlations accessed by modifying the readout of the interferometer
can access physics beyond the SQL and improve displacement sensitivity.
Specifically, we use an optical cavity to probe the motion of a silicon nitride
membrane off mechanical resonance, as one would do in a broadband displacement
or force measurement, and observe sensitivity better than the SQL dictates for
our quantum efficiency. Our measurement illustrates the core idea behind a
technique known as \textit{variational readout}, in which the optical readout
quadrature is changed as a function of frequency to improve broadband
displacement detection. And more generally our result is a salient example of
how correlations can aid sensing in the presence of backaction.Comment: 17 pages, 5 figure
Outbreak of acute hepatitis C following the use of anti-hepatitis C virus--screened intravenous immunoglobulin therapy
BACKGROUND and AIMS: Hepatitis C virus (HCV) infection has been associated with intravenous (IV) immunoglobulin (Ig), and plasma donations used to prepare IV Ig are now screened to prevent transmission. Thirty-six patients from the United Kingdom received infusions from a batch of anti-HCV antibody-screened intravenous Ig (Gammagard; Baxter Healthcare Ltd., Thetford, Norfolk, England) that was associated with reports of acute hepatitis C outbreak in Europe. The aim of this study was to document the epidemiology of this outbreak. METHODS: Forty-six patients from the United Kingdom treated with Gammagard (34 exposed and 12 unexposed to the batch) returned epidemiological questionnaires. RESULTS: Eighty-two percent of the exposed patients (28 of 34) became positive for HCV RNA. Eighteen percent of the patients (6 of 34) who had infusions with this batch tested negative for HCV RNA, but 2 of the patients had abnormal liver function and subsequently seroconverted to anti-HCV antibody positive. Twenty-seven percent of the patients (9 of 34) developed jaundice, and 79% (27 of 34) had abnormal liver transferase levels. Virus isolates (n=21), including an isolate from the implicated batch, were genotype 1a and virtually identical by sequence analysis of the NS5 region, consistent with transmission from a single source. CONCLUSIONS: Hepatitis C infection can be transmitted by anti-HCV-screened IV Ig. Careful documentation of IV Ig batch numbers and regular biochemical monitoring is recommended for all IV Ig recipients
- ā¦