52 research outputs found

    Are Small GTPases Signal Hubs in Sugar-Mediated Induction of Fructan Biosynthesis?

    Get PDF
    External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling

    Host Gene Expression Profiling of Dengue Virus Infection in Cell Lines and Patients

    Get PDF
    Dengue is the most prevalent mosquito-born viral disease affecting humans, yet there is, at present, no drug treatment for the disease nor are there any validated host targets for therapeutic intervention. Using microarray technology to monitor the response of virtually every human gene, we aimed to identify the ways in which humans interact with dengue virus during infection in order to discover new therapeutic targets that could be exploited to control viral replication. From the activated genes, we identified three pathways common to in vitro and in vivo infection; the NF-κB initiated immune pathway, the type I interferon pathway, and the ubiquitin proteasome pathway. We next found that inhibiting the ubiquitin proteasome pathway, or activating the type I interferon pathway, resulted in significant inhibition of viral replication. However, inhibiting the NF-κB initiated immune pathway had no effect on viral replication. We suggest that drugs that target the ubiquitin proteasome pathway may prove effective at killing the dengue virus, and, if used therapeutically, improve clinical outcome in dengue disease

    Involvement of Dopamine Receptors in Binge Methamphetamine-Induced Activation of Endoplasmic Reticulum and Mitochondrial Stress Pathways

    Get PDF
    Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in rodent striata. The dopamine D1 receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D1 and D2 receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D1 or D2 receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58IPK, in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D2-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors

    Environmental Acidification Drives S. pyogenes Pilus Expression and Microcolony Formation on Epithelial Cells in a FCT-Dependent Manner

    Get PDF
    Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen responsible for a diverse variety of diseases, including pharyngitis, skin infections, invasive necrotizing fasciitis and autoimmune sequelae. We have recently shown that GAS cell adhesion and biofilm formation is associated with the presence of pili on the surface of these bacteria. GAS pilus proteins are encoded in the FCT (Fibronectin- Collagen-T antigen) genomic region, of which nine different variants have been identified so far. In the present study we undertook a global analysis of GAS isolates representing the majority of FCT-variants to investigate the effect of environmental growth conditions on their capacity to form multicellular communities. For FCT-types 2, 3, 5 and 6 and a subset of FCT-4 strains, we observed that acidification resulting from fermentative sugar metabolism leads to an increased ability of the bacteria to form biofilm on abiotic surfaces and microcolonies on epithelial cells. The higher biofilm forming capacity at low environmental pH was directly associated with an enhanced expression of the genes encoding the pilus components and of their transcription regulators. The data indicate that environmental pH affects the expression of most pilus types and thereby the formation of multicellular cell-adhering communities that assist the initial steps of GAS infection

    The Methyl-CpG Binding Proteins Mecp2, Mbd2 and Kaiso Are Dispensable for Mouse Embryogenesis, but Play a Redundant Function in Neural Differentiation

    Get PDF
    The precise molecular changes that occur when a neural stem (NS) cell switches from a programme of self-renewal to commit towards a specific lineage are not currently well understood. However it is clear that control of gene expression plays an important role in this process. DNA methylation, a mark of transcriptionally silent chromatin, has similarly been shown to play important roles in neural cell fate commitment in vivo. While DNA methylation is known to play important roles in neural specification during embryonic development, no such role has been shown for any of the methyl-CpG binding proteins (Mecps) in mice.. No evidence for functional redundancy between these genes in embryonic development or in the derivation or maintenance of neural stem cells in culture was detectable. However evidence for a defect in neuronal commitment of triple knockout NS cells was found.Although DNA methylation is indispensable for mammalian embryonic development, we show that simultaneous deficiency of three methyl-CpG binding proteins genes is compatible with apparently normal mouse embryogenesis. Nevertheless, we provide genetic evidence for redundancy of function between methyl-CpG binding proteins in postnatal mice

    Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation?

    Full text link
    PURPOSE: Tissue engineered skin substitutes are a promising tool to cover large skin defects, but little is known about reinnervation of transplants. In this experimental study, we analyzed the ingrowth of host peripheral nerve fibers into human tissue engineered dermo-epidermal skin substitutes in a rat model. Using varying cell types in the epidermal compartment, we wanted to assess the influence of epidermal cell types on reinnervation of the substitute. METHODS: We isolated keratinocytes, melanocytes, fibroblasts, and eccrine sweat gland cells from human skin biopsies. After expansion, epidermal cells were seeded on human dermal fibroblast-containing collagen type I hydrogels as follows: (1) keratinocytes only, (2) keratinocytes with melanocytes, (3) sweat gland cells. These substitutes were transplanted into full-thickness skin wounds on the back of immuno-incompetent rats and were analyzed after 3 and 8 weeks. Histological sections were examined with regard to myelinated and unmyelinated nerve fiber ingrowth using markers such as PGP9.5, NF-200, and NF-145. RESULTS: After 3 weeks, the skin substitutes of all three epidermal cell variants showed no neuronal ingrowth from the host into the transplant. After 8 weeks, we could detect an innervation of all three types of skin substitutes. However, the nerve fibers were restricted to the dermal compartment and we could not find any unmyelinated fibers in the epidermis. Furthermore, there was no distinct difference between the constructs resulting from the different cell types used to generate an epidermis. CONCLUSION: Our human tissue engineered dermo-epidermal skin substitutes demonstrate a host-derived innervation of the dermal compartment as early as 8 weeks after transplantation. Thus, our substitutes apparently have the capacity to attract nerve fibers from adjacent host tissues, which also grow into grafts and thereby potentially restore skin sensitivity

    Prevalence and incidence of iron deficiency in European community-dwelling older adults : An observational analysis of the DO-HEALTH trial

    Get PDF
    Background and aim Iron deficiency is associated with increased morbidity and mortality in older adults. However, data on its prevalence and incidence among older adults is limited. The aim of this study was to investigate the prevalence and incidence of iron deficiency in European community-dwelling older adults aged ≥ 70 years. Methods Secondary analysis of the DO-HEALTH trial, a 3-year clinical trial including 2157 community-dwelling adults aged ≥ 70 years from Austria, France, Germany, Portugal and Switzerland. Iron deficiency was defined as soluble transferrin receptor (sTfR) > 28.1 nmol/L. Prevalence and incidence rate (IR) of iron deficiency per 100 person-years were examined overall and stratified by sex, age group, and country. Sensitivity analysis for three commonly used definitions of iron deficiency (ferritin  1.5) were also performed. Results Out of 2157 participants, 2141 had sTfR measured at baseline (mean age 74.9 years; 61.5% women). The prevalence of iron deficiency at baseline was 26.8%, and did not differ by sex, but by age (35.6% in age group ≥ 80, 29.3% in age group 75–79, 23.2% in age group 70–74); P  1.5. Occurrences of iron deficiency were observed with IR per 100 person-years of 9.2 (95% CI 8.3–10.1) and did not significantly differ by sex or age group. The highest IR per 100 person-years was observed in Austria (20.8, 95% CI 16.1–26.9), the lowest in Germany (6.1, 95% CI 4.7–8.0). Regarding the other definitions of iron deficiency, the IR per 100 person-years was 4.5 (95% CI 4.0–4.9) for ferritin  1.5. Conclusions Iron deficiency is frequent among relatively healthy European older adults, with people aged ≥ 80 years and residence in Austria and Portugal associated with the highest risk

    Rab32 connects ER stress to mitochondrial defects in multiple sclerosis.

    Get PDF
    Endoplasmic reticulum (ER) stress is a hallmark of neurodegenerative diseases such as multiple sclerosis (MS). However, this physiological mechanism has multiple manifestations that range from impaired clearance of unfolded proteins to altered mitochondrial dynamics and apoptosis. While connections between the triggering of the unfolded protein response (UPR) and downstream mitochondrial dysfunction are poorly understood, the membranous contacts between the ER and mitochondria, called the mitochondria-associated membrane (MAM), could provide a functional link between these two mechanisms. Therefore, we investigated whether the guanosine triphosphatase (GTPase) Rab32, a known regulator of the MAM, mitochondrial dynamics, and apoptosis, could be associated with ER stress as well as mitochondrial dysfunction.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    Of yeast, mice and men: MAMs come in two flavors

    Full text link
    corecore