3 research outputs found

    Double Carbon−Hydrogen Activation of 2-Vinylpyridine: Synthesis of Tri- and Pentanuclear Clusters Containing the μ-NC\u3csub\u3e5\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3eCH═C Ligand

    Get PDF
    Reactions of 2-vinylpyridine with the triruthenium complexes [Ru3(CO)12] and [Ru3(CO)10(μ-dppm)] leads to a previously unknown double carbon−hydrogen bond activation of the β-carbon of the vinyl group to afford the pentaruthenium and triruthenium complexes [Ru5(CO)14(μ4-C5H4CH═C)(μ-H)2] (1) and [Ru3Cl(CO)5(μ-CO)(μ-dppm)(μ3-NC5H4CH═C)(μ-H)] (2), respectively. Crystal structures reveal two different forms of bridging of the dimetalated 2-vinylpyridyl ligand, capping a square face in 1 and a triangular face in 2

    Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field

    Get PDF
    Ferulic acid is a phenolic acid widely distributed in the plant kingdom. It presents a wide range of potential therapeutic effects useful in the treatments of cancer, diabetes, lung and cardiovascular diseases, as well as hepatic, neuro and photoprotective effects and antimicrobial and anti-inflammatory activities. Overall, the pharmaceutical potential of ferulic acid can be attributed to its ability to scavenge free radicals. However, recent studies have revealed that ferulic acid presents pharmacological properties beyond those related to its antioxidant activity, such as the ability to competitively inhibit HMG-CoA reductase and activate glucokinase, contributing to reduce hypercholesterolemia and hyperglycemia, respectively. The present review addresses ferulic acid dietary sources, the pharmacokinetic profile, antioxidant action mechanisms and therapeutic effects in the treatment and prevention of various diseases, in order to provide a basis for understanding its mechanisms of action as well as its pharmaceutical potential

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor
    corecore