77 research outputs found

    The Role of Biomethylation in Toxicity and Carcinogenicity of Arsenic: A Research Update

    Get PDF
    Recent research of the metabolism and biological effects of arsenic has profoundly changed our understanding of the role of metabolism in modulation of toxicity and carcinogenicity of this metalloid. Historically, the enzymatic conversion of inorganic arsenic to mono- and dimethylated species has been considered a major mechanism for detoxification of inorganic arsenic. However, compelling experimental evidence obtained from several laboratories suggests that biomethylation, particularly the production of methylated metabolites that contain trivalent arsenic, is a process that activates arsenic as a toxin and a carcinogen. This article summarizes this evidence and provides new data on a) the toxicity of methylated trivalent arsenicals in mammalian cells, b) the effects of methylated trivalent arsenicals on gene transcription, and c) the mechanisms involved in arsenic methylation in animal and human tissues

    Biokinetics and Subchronic Toxic Effects of Oral Arsenite, Arsenate, Monomethylarsonic Acid, and Dimethylarsinic Acid in v-Ha-ras Transgenic (Tg.AC) Mice

    Get PDF
    Previous research demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment increased the number of skin papillomas in v-Ha-ras transgenic (Tg.AC) mice that had received sodium arsenite [(As(III)] in drinking water, indicating that this model is useful for studying the toxic effects of arsenic in vivo. Because the liver is a known target of arsenic, we examined the pathophysiologic and molecular effects of inorganic and organic arsenical exposure on Tg.AC mouse liver in this study. Tg.AC mice were provided drinking water containing As(III), sodium arsenate [As(V)], monomethylarsonic acid [(MMA(V)], and 1,000 ppm dimethylarsinic acid [DMA(V)] at dosages of 150, 200, 1,500, or 1,000 ppm as arsenic, respectively, for 17 weeks. Control mice received unaltered water. Four weeks after initiation of arsenic treatment, TPA at a dose of 1.25 μg/200 μL acetone was applied twice a week for 2 weeks to the shaved dorsal skin of all mice, including the controls not receiving arsenic. In some cases arsenic exposure reduced body weight gain and caused mortality (including moribundity). Arsenical exposure resulted in a dose-dependent accumulation of arsenic in the liver that was unexpectedly independent of chemical species and produced hepatic global DNA hypomethylation. cDNA microarray and reverse transcriptase–polymerase chain reaction analysis revealed that all arsenicals altered the expression of numerous genes associated with toxicity and cancer. However, organic arsenicals [MMA(V) and DMA(V)] induced a pattern of gene expression dissimilar to that of inorganic arsenicals. In summary, subchronic exposure of Tg.AC mice to inorganic or organic arsenicals resulted in toxic manifestations, hepatic arsenic accumulation, global DNA hypomethylation, and numerous gene expression changes. These effects may play a role in arsenic-induced hepatotoxicity and carcinogenesis and may be of particular toxicologic relevance

    Chronic Arsenic Exposure and Oxidative Stress: OGG1 Expression and Arsenic Exposure, Nail Selenium, and Skin Hyperkeratosis in Inner Mongolia

    Get PDF
    Arsenic, a human carcinogen, is known to induce oxidative damage to DNA. In this study we investigated oxidative stress and As exposure by determining gene expression of OGG1, which codes for an enzyme, 8-oxoguanine DNA glycosylase, involved in removing 8-oxoguanine in As-exposed individuals. Bayingnormen (Ba Men) residents in Inner Mongolia are chronically exposed to As via drinking water. Water, toenail, and blood samples were collected from 299 Ba Men residents exposed to 0.34–826 μg/L As. RNA was isolated from blood, and mRNA levels of OGG1 were determined using real-time polymerase chain reaction. OGG1 expression levels were linked to As concentrations in drinking water and nails, selenium concentrations in nails, and skin hyperkeratosis. OGG1 expression was strongly associated with water As concentrations (p < 0.0001). Addition of the quadratic term significantly improved the fit compared with the linear model (p = 0.05). The maximal OGG1 response was at the water As concentration of 149 μg/L. OGG1 expression was also significantly associated with toenail As concentrations (p = 0.015) but inversely associated with nail Se concentrations (p = 0.0095). We found no significant differences in the As-induced OGG1 expression due to sex, smoking, or age even though the oldest group showed the strongest OGG1 response (p = 0.0001). OGG1 expression showed a dose-dependent increased risk of skin hyperkeratosis in males (trend analysis, p = 0.02), but the trend was not statistically significant in females. The results from this study provide a linkage between oxidative stress and As exposure in humans. OGG1 expression may be useful as a biomarker for assessing oxidative stress from As exposure

    HIV-Specific T-Cells Accumulate in the Liver in HCV/HIV Co-Infection

    Get PDF
    BACKGROUND AND AIMS: Hepatitis C Virus (HCV)-related liver disease progresses more rapidly in individuals co-infected with Human Immunodeficiency Virus-1 (HIV), although the underlying immunologic mechanisms are unknown. We examined whether HIV-specific T-cells are identified in the liver of HCV/HIV co-infected individuals and promote liver inflammation through bystander immune responses. METHODS: Ex-vivo intra-hepatic lymphocytes from HCV mono-infected and HCV/HIV co-infected individuals were assessed for immune responses to HIV and HCV antigens by polychromatic flow cytometry. RESULTS: HCV/HIV liver biopsies had similar frequencies of lymphocytes but lower percentages of CD4+ T-cells compared to HCV biopsies. In co-infection, intra-hepatic HIV-specific CD8+ and CD4+ T-cells producing IFN-gamma and TNF-alpha were detected and were comparable in frequency to those that were HCV-specific. In co-infected individuals, viral-specific CD8+ T-cells produced more of the fibrogenic cytokine, TNF-alpha. In both mono- and co-infected individuals, intra-hepatic HCV-specific T-cells were poorly functional compared to HIV-specific T-cells. In co-infection, HAART was not associated with a reconstitution of intra-hepatic CD4+ T-cells and was associated with reduction in both HIV and HCV-specific intra-hepatic cytokine responses. CONCLUSION: The accumulation of functional HIV-specific T-cells in the liver during HCV/HIV co-infection may represent a bystander role for HIV in inducing faster progression of liver disease

    Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis

    Get PDF
    BACKGROUND: Exposure to arsenic concentrations in drinking water in excess of 300 μg/L is associated with diseases of the circulatory and respiratory system, several types of cancer, and diabetes; however, little is known about the health consequences of exposure to low-to-moderate levels of arsenic (10–100 μg/L). METHODS: A standardized mortality ratio (SMR) analysis was conducted in a contiguous six county study area of southeastern Michigan to investigate the relationship between moderate arsenic levels and twenty-three selected disease outcomes. Disease outcomes included several types of cancer, diseases of the circulatory and respiratory system, diabetes mellitus, and kidney and liver diseases. Arsenic data were compiled from 9251 well water samples tested by the Michigan Department of Environmental Quality from 1983 through 2002. Michigan Resident Death Files data were amassed for 1979 through 1997 and sex-specific SMR analyses were conducted with indirect adjustment for age and race; 99% confidence intervals (CI) were reported. RESULTS: The six county study area had a population-weighted mean arsenic concentration of 11.00 μg/L and a population-weighted median of 7.58 μg/L. SMR analyses were conducted for the entire six county study area, for only Genesee County (the most populous and urban county), and for the five counties besides Genesee. Concordance of results across analyses is used to interpret the findings. Elevated mortality rates were observed for both males (M) and females (F) for all diseases of the circulatory system (M SMR, 1.11; CI, 1.09–1.13; F SMR, 1.15; CI, 1.13,-1.17), cerebrovascular diseases (M SMR, 1.19; CI, 1.14–1.25; F SMR, 1.19; CI, 1.15–1.23), diabetes mellitus (M SMR, 1.28; CI, 1.18–1.37; F SMR, 1.27; CI, 1.19–1.35), and kidney diseases (M SMR, 1.28; CI, 1.15–1.42; F SMR, 1.38; CI, 1.25–1.52). CONCLUSION: This is some of the first evidence to suggest that exposure to low-to-moderate levels of arsenic in drinking water may be associated with several of the leading causes of mortality, although further epidemiologic studies are required to confirm the results suggested by this ecologic SMR analysis

    Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice

    Get PDF
    Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury.Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway.Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases
    corecore