3,957 research outputs found

    A Hubble Space Telescope Snapshot Survey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey

    Full text link
    We compare the structural properties of two classes of galaxies at intermediate redshift: those in dynamically close galaxy pairs, and those which are isolated. Both samples are selected from the CNOC2 Redshift Survey, and have redshifts in the range 0.1 < z <0.6. Hubble Space Telescope WFPC2 images were acquired as part of a snapshot survey, and were used to measure bulge fraction and asymmetry for these galaxies. We find that paired and isolated galaxies have identical distributions of bulge fractions. Conversely, we find that paired galaxies are much more likely to be asymmetric (R_T+R_A >= 0.13) than isolated galaxies. Assuming that half of these pairs are unlikely to be close enough to merge, we estimate that 40% +/- 11% of merging galaxies are asymmetric, compared with 9% +/- 3% of isolated galaxies. The difference is even more striking for strongly asymmetric (R_T+R_A >= 0.16) galaxies: 25% +/- 8% for merging galaxies versus 1% +/- 1% for isolated galaxies. We find that strongly asymmetric paired galaxies are very blue, with rest-frame B-R colors close to 0.80, compared with a mean (B-R)_0 of 1.24 for all paired galaxies. In addition, asymmetric galaxies in pairs have strong [OII]3727 emission lines. We conclude that close to half of the galaxy pairs in our sample are in the process of merging, and that most of these mergers are accompanied by triggered star formation.Comment: Accepted for publication in the Astronomical Journal. 40 pages, including 15 figures. For full resolution version, please see http://www.trentu.ca/physics/dpatton/hstpairs

    Applying dissipative dynamical systems to pseudorandom number generation: Equidistribution property and statistical independence of bits at distances up to logarithm of mesh size

    Full text link
    The behavior of a family of dissipative dynamical systems representing transformations of two-dimensional torus is studied on a discrete lattice and compared with that of conservative hyperbolic automorphisms of the torus. Applying dissipative dynamical systems to generation of pseudorandom numbers is shown to be advantageous and equidistribution of probabilities for the sequences of bits can be achieved. A new algorithm for generating uniform pseudorandom numbers is proposed. The theory of the generator, which includes proofs of periodic properties and of statistical independence of bits at distances up to logarithm of mesh size, is presented. Extensive statistical testing using available test packages demonstrates excellent results, while the speed of the generator is comparable to other modern generators.Comment: 6 pages, 3 figures, 3 table

    The Next Generation Virgo Cluster Survey. VII. The intrinsic shapes of low-luminosity galaxies in the core of the Virgo cluster, and a comparison with the Local Group

    Full text link
    (Abridged) We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo cluster using deep imaging obtained as part of the NGVS. We build a sample of nearly 300 red-sequence cluster members in the yet unexplored 14<Mg<8-14 < M_{g} < -8 magnitude range. The observed distribution of apparent axis ratios is then fit by families of triaxial models with normally-distributed intrinsic ellipticities and triaxialities. We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity E=0.43, and a mean triaxiality T=0.16. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. We additionally attempt a study of the intrinsic shapes of Local Group satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity E=0.51, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides--but there is a hint that objects may be slightly rounder in denser environments. The comparable flattening distributions of low-luminosity galaxies that have experienced very different degrees of environmental effects suggests that internal processes are the main drivers of galaxy structure at low masses--with external mechanisms playing a secondary role.Comment: Accepted to ApJ. 18 pages, 12 figure

    Recovering 3D structural properties of galaxies from SDSS-like photometry

    Full text link
    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA

    The E-ELT Multi-Object Spectrograph: latest news from MOSAIC

    Get PDF
    There are 8000 galaxies, including 1600 at z larger than 1.6, which could be simultaneously observed in an E-ELT field of view of 40 sq. arcmin. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be obtained with multi-object spectrographs (MOS). MOSAIC will provide a vast discovery space, enabled by a multiplex of 200 and spectral resolving powers of R=5000 and 20000. MOSAIC will also offer the unique capability of more than 10 "high-definition" (multi-object adaptive optics, MOAO) integral-field units, optimised to investigate the physics of the sources of reionization. The combination of these modes will make MOSAIC the world-leading MOS facility, contributing to all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest "first-light" structures in the Universe. It will also study the distribution of the dark and ordinary matter at all scales and epochs of the Universe. Recent studies of critical technical issues such as sky-background subtraction and MOAO have demonstrated that such a MOS is feasible with state-of-the-art technology and techniques. Current studies of the MOSAIC team include further trade-offs on the wavelength coverage, a solution for compensating for the non-telecentric new design of the telescope, and tests of the saturation of skylines especially in the near-IR bands. In the 2020s the E-ELT will become the world's largest optical/IR telescope, and we argue that it has to be equipped as soon as possible with a MOS to provide the most efficient, and likely the best way to follow-up on James Webb Space Telescope (JWST) observations.Comment: 10 pages, 3 Figures, in Ground-based and Airborne Instrumentation for Astronomy VI, 2016, Proc. SPI

    COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration

    Get PDF
    published_or_final_versio

    Galactic Globular Cluster Metallicity Scale from the Ca II Triplet. I. Catalog

    Full text link
    We have obtained 2640 CCD spectra with resolution ~4 Angstrom in the region 7250-9000 Angstroms for 976 stars lying near the red giant branches in color-magnitude diagrams of 52 Galactic globular clusters. Radial velocities of ~16 km/second accuracy per star determined from the spectra are combined with other criteria to assess quantitative membership probabilities. Measurements of the equivalent widths of the infrared calcium triplet lines yield a relative metal-abundance ranking with a precision that compares favorably to other techniques. Regressions between our system and those of others are derived. Our reduction procedures are discussed in detail, and the resultant catalog of derived velocities and equivalent widths is presented. The metal abundances derived from these data will be the subject of a future paper.Comment: To appear in August 1997 PASP. Also available at http://www.hia.nrc.ca/eprints.htm

    A Bayesian approach to strong lensing modelling of galaxy clusters

    Full text link
    In this paper, we describe a procedure for modelling strong lensing galaxy clusters with parametric methods, and to rank models quantitatively using the Bayesian evidence. We use a publicly available Markov chain Monte-Carlo (MCMC) sampler ('Bayesys'), allowing us to avoid local minima in the likelihood functions. To illustrate the power of the MCMC technique, we simulate three clusters of galaxies, each composed of a cluster-scale halo and a set of perturbing galaxy-scale subhalos. We ray-trace three light beams through each model to produce a catalogue of multiple images, and then use the MCMC sampler to recover the model parameters in the three different lensing configurations. We find that, for typical Hubble Space Telescope (HST)-quality imaging data, the total mass in the Einstein radius is recovered with ~1-5% error according to the considered lensing configuration. However, we find that the mass of the galaxies is strongly degenerated with the cluster mass when no multiple images appear in the cluster centre. The mass of the galaxies is generally recovered with a 20% error, largely due to the poorly constrained cut-off radius. Finally, we describe how to rank models quantitatively using the Bayesian evidence. We confirm the ability of strong lensing to constrain the mass profile in the central region of galaxy clusters in this way. Ultimately, such a method applied to strong lensing clusters with a very large number of multiple images may provide unique geometrical constraints on cosmology. The implementation of the MCMC sampler used in this paper has been done within the framework of the Lenstool software package, which is publicly available.Comment: Accepted to "Gravitational Lensing" Focus Issue of the New Journal of Physics (invited), 35 pages, 11 figures at reduced resolutio

    Job Satisfaction and Psychological Distress among Help-Seeking Men: Does Meaning in Life Play a Role?

    Full text link
    Men’s low job satisfaction has been shown to be associated with greater symptoms of psychological distress. Meaning in life may be an important factor in this relationship, but its role as a mediator has not been reported. The present study investigated meaning in life as a mediator in the relationship between job satisfaction and psychological distress among men. A total of 229 employed Canadian men participated in a cross-sectional survey, completing measures of depression and anxiety symptoms, anger severity, job satisfaction, and the presence of meaning in life. Zero-order correlations were calculated, and regression with mediation analyses were conducted; two models were tested: one for anxiety/depression symptoms and one for anger, as the dependent variables. Both mediation models emerged as significant, revealing a significant mediating effect for job satisfaction on the symptoms of psychological distress (anxiety/depression symptoms, anger) through meaning in life, even while controlling for salient confounding variables including COVID-related impacts. Lower job satisfaction was associated with less meaning in life, which in turn was associated with more symptoms of depression, anxiety, and anger. The findings highlight the importance of job satisfaction in the promotion of a sense of meaning in life among men, leading to improved psychological well-being both inside and outside of the workplace

    PROTOCOL: Digital interventions to reduce social isolation and loneliness in older adults: An evidence and gap map

    Get PDF
    This is the protocol for a Campbell systematic review. The objectives are as follows: the aim is to map available evidence on the effects of digital interventions to mitigate social isolation and/or loneliness in older adults in all settings except hospital settings
    corecore