806 research outputs found
Energy production by means of pumps as turbines in water distribution networks
This paper deals with the estimation of the energy production by means of pumps used as turbines to exploit residual hydraulic energy, as in the case of available head and flow rate in water distribution networks. To this aim, four pumps with different characteristics are investigated to estimate the producible yearly electric energy. The performance curves of Pumps As Turbines (PATs), which relate head, power, and efficiency to the volume flow rate over the entire PAT operation range, were derived by using published experimental data. The four considered water distribution networks, for which experimental data taken during one year were available, are characterized by significantly different hydraulic features (average flow rate in the range 10-116 L/s; average pressure reduction in the range 12-53 m). Therefore, energy production accounts for actual flow rate and head variability over the year. The conversion efficiency is also estimated, for both the whole water distribution network and the PAT alone.This paper deals with the estimation of the energy production by means of pumps used as turbines to exploit residual hydraulic energy, as in the case of available head and flow rate in water distribution networks. To this aim, four pumps with different characteristics are investigated to estimate the producible yearly electric energy. The performance curves of Pumps As Turbines (PATs), which relate head, power, and efficiency to the volume flow rate over the entire PAT operation range, were derived by using published experimental data. The four considered water distribution networks, for which experimental data taken during one year were available, are characterized by significantly different hydraulic features (average flow rate in the range 10-116 L/s; average pressure reduction in the range 12-53 m). Therefore, energy production accounts for actual flow rate and head variability over the year. The conversion efficiency is also estimated, for both the whole water distribution network and the PAT alone
Comparison of different approaches to predict the performance of pumps as turbines (PATs)
This paper deals with the comparison of different methods which can be used for the prediction of the performance curves of pumps as turbines (PATs). The considered approaches are four, i.e., one physics-based simulation model ("white box" model), two "gray box" models, which integrate theory on turbomachines with specific data correlations, and one "black box" model. More in detail, the modeling approaches are: (1) a physics-based simulation model developed by the same authors, which includes the equations for estimating head, power, and efficiency and uses loss coefficients and specific parameters; (2) a model developed by Derakhshan and Nourbakhsh, which first predicts the best efficiency point of a PAT and then reconstructs their complete characteristic curves by means of two ad hoc equations; (3) the prediction model developed by Singh and Nestmann, which predicts the complete turbine characteristics based on pump shape and size; (4) an Evolutionary Polynomial Regression model, which represents a data-driven hybrid scheme which can be used for identifying the explicit mathematical relationship between PAT and pump curves. All approaches are applied to literature data, relying on both pump and PAT performance curves of head, power, and efficiency over the entire range of operation. The experimental data were provided by Derakhshan and Nourbakhsh for four different turbomachines, working in both pump and PAT mode with specific speed values in the range 1.53-5.82. This paper provides a quantitative assessment of the predictions made by means of the considered approaches and also analyzes consistency from a physical point of view. Advantages and drawbacks of each method are also analyzed and discussed.This paper deals with the comparison of different methods which can be used for the prediction of the performance curves of pumps as turbines (PATs). The considered approaches are four, i.e., one physics-based simulation model ("white box" model), two "gray box" models, which integrate theory on turbomachines with specific data correlations, and one "black box" model. More in detail, the modeling approaches are: (1) a physics-based simulation model developed by the same authors, which includes the equations for estimating head, power, and efficiency and uses loss coefficients and specific parameters; (2) a model developed by Derakhshan and Nourbakhsh, which first predicts the best efficiency point of a PAT and then reconstructs their complete characteristic curves by means of two ad hoc equations; (3) the prediction model developed by Singh and Nestmann, which predicts the complete turbine characteristics based on pump shape and size; (4) an Evolutionary Polynomial Regression model, which represents a data-driven hybrid scheme which can be used for identifying the explicit mathematical relationship between PAT and pump curves. All approaches are applied to literature data, relying on both pump and PAT performance curves of head, power, and efficiency over the entire range of operation. The experimental data were provided by Derakhshan and Nourbakhsh for four different turbomachines, working in both pump and PAT mode with specific speed values in the range 1.53-5.82. This paper provides a quantitative assessment of the predictions made by means of the considered approaches and also analyzes consistency from a physical point of view. Advantages and drawbacks of each method are also analyzed and discussed
Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability
The paper presents the design and control strategy of an isolated DC microgrid, which is based on classical control techniques, predictive control and iterative algorithms. The design control parameters are maximum overshoot, settling time and voltage ripple. The strategy is designed to operate in two different modes, end-users minimum and maximum demand scenarios, and this is achieved through the incorporation of network dynamic loads. The control methodology developed allows to obtain a fast response of the design set points, and an efficient control for disturbance rejection. The simulation results obtained satisfy the proposed design guidelines by obtaining a maximum overshoot of 4.8%, settling time of 0.012 seconds and a voltage ripple of 0.1 percentage. The implemented system simulation was developed in Matlab-Simulink software
COVID-19, de novo seizures, and epilepsy: a systematic review
Objective: We discuss the evidence on the occurrence of de novo seizures in patients with COVID-19, the consequences of this catastrophic disease in people with epilepsy (PWE), and the electroencephalographic (EEG) findings in patients with COVID-19. Methods: This systematic review was prepared according to the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. MEDLINE, Scopus, and Embase from inception to August 15, 2020 were systematically searched. These key words were used: �COVID� AND �seizure� OR �epilepsy� OR �EEG� OR �status epilepticus� OR �electroencephalography�. Results: We could identify 62 related manuscripts. Many studies were case reports or case series of patients with COVID-19 and seizures. PWE showed more psychological distress than healthy controls. Many cases with new-onset focal seizures, serial seizures, and status epilepticus have been reported in the literature. EEG studies have been significantly ignored and underused globally. Conclusion: Many PWE perceived significant disruption in the quality of care to them, and some people reported increase in their seizure frequency since the onset of the pandemic. Telemedicine is a helpful technology that may improve access to the needed care for PWE in these difficult times. De novo seizures may occur in people with COVID-19 and they may happen in a variety of forms. In addition to prolonged EEG monitoring, performing a through metabolic investigation, electrocardiogram, brain imaging, and a careful review of all medications are necessary steps. The susceptibility of PWE to contracting COVID-19 should be investigated further. © 2020, Fondazione Società Italiana di Neurologia
Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium
We report on a measurement of spin-momentum correlations in quasi-elastic
scattering of longitudinally polarized electrons with an energy of 720 MeV from
vector-polarized deuterium. The spin correlation parameter was
measured for the reaction for missing
momenta up to 350 MeV/ at a four-momentum transfer squared of 0.21
(GeV/c). The data give detailed information about the spin structure of the
deuteron, and are in good agreement with the predictions of microscopic
calculations based on realistic nucleon-nucleon potentials and including
various spin-dependent reaction mechanism effects. The experiment demonstrates
in a most direct manner the effects of the D-state in the deuteron ground-state
wave function and shows the importance of isobar configurations for this
reaction.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. for publicatio
Low seroprevalence of hepatitis E virus in pregnant women in an urban area near Pretoria, South Africa
OBJECTIVES : Hepatitis E virus (HEV) infection is a globally neglected health problem with a high burden in resource-poor communities. Pregnant women are at increased risk of complications. This pilot study sought to assess the seroprevalence of HEV infection in pregnant women at Dr George Mukhari Academic Hospital, South Africa.
METHODS : Stored serum samples from 384 HIV-uninfected pregnant women attending the antenatal clinic were initially screened for HEV total antibody. Positive samples were further evaluated for the presence of IgG and IgM antibody isotypes, using commercial ELISA assays. HEV RNA was assessed in antibody-positive samples utilizing qRT-PCR assay.
RESULTS : The sample consisted of women with a median age of 31 years (interquartile range: 28–35 years). Total HEV antibody was detected in 12/384 (3.13%, 95% CI: 1.80–5.38) of these pregnant women. All 12 samples were IgG HEV antibody positive, but none tested positive for IgM antibody or for HEV RNA, demonstrating a lack of current or recent exposure.
CONCLUSIONS : Our study revealed a low seroprevalence of HEV among pregnant women from an urban area north of Pretoria. This observation warrants further attention to the circulation of HEV in this population, and a greater understanding of the epidemiology of the infection in South Africa.The South African Ministry of Higher Education, Science and Innovation, and the National Research Foundation.http://www.elsevier.com/locate/ijregihj2023Medical Virolog
First Measurement of the Tensor Structure Function of the Deuteron
The \Hermes experiment has investigated the tensor spin structure of the
deuteron using the 27.6 GeV/c positron beam of \Hera. The use of a tensor
polarized deuteron gas target with only a negligible residual vector
polarization enabled the first measurement of the tensor asymmetry \At and
the tensor structure function \bd for average values of the Bj{\o}rken
variable and of the squared four-momentum transfer . The quantities \At and \bd are found to be
non-zero. The rise of \bd for decreasing values of can be interpreted to
originate from the same mechanism that leads to nuclear shadowing in
unpolarized scattering
Flavor decomposition of the sea quark helicity distributions in the nucleon from semi-inclusive deep-inelastic scattering
Double-spin asymmetries of semi-inclusive cross sections for the production
of identified pions and kaons have been measured in deep-inelastic scattering
of polarized positrons on a polarized deuterium target. Five helicity
distributions including those for three sea quark flavors were extracted from
these data together with re-analyzed previous data for identified pions from a
hydrogen target. These distributions are consistent with zero for all three sea
flavors. A recently predicted flavor asymmetry in the polarization of the light
quark sea appears to be disfavored by the data.Comment: 5 pages, 3 figure
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
The Q^2-Dependence of Nuclear Transparency for Exclusive Production
Exclusive coherent and incoherent electroproduction of the meson
from H and N targets has been studied at the HERMES experiment as a
function of coherence length (), corresponding to the lifetime of hadronic
fluctuations of the virtual photon, and squared four-momentum of the virtual
photon (). The ratio of N to H cross sections per nucleon,
known as nuclear transparency, was found to increase (decrease) with increasing
coherence length for coherent (incoherent) electroproduction. For
fixed coherence length, a rise of nuclear transparency with is observed
for both coherent and incoherent production, which is in agreement
with theoretical calculations of color transparency.Comment: 5 pages, 4 figure
- …