22 research outputs found

    Qie yun zhi zhang tu /

    No full text
    Caption title.; Special collection from London Missionary Society.; On double leaves, oriental style.; Also available in an electronic version via the Internet at http://nla.gov.au/nla.gen-vn527736

    Risk factors for hilar cholangiocarcinoma: A case-control study in China

    No full text
    AIM: To study the association between hilar cholangiocarcinoma (HC) and pre-existing medical conditions

    Fluorluanshiweiite, KLiAl1.5â–¡0.5(Si3.5Al0.5)O10F2, a New Mineral of the Mica Group from the Nanyangshan LCT Pegmatite Deposit, North Qinling Orogen, China

    No full text
    A new mineral species of the mica group, fluorluanshiweiite, ideally KLiAl1.5â–¡0.5(Si3.5Al0.5)O10F2, has been found in the Nanyangshan LCT (Li, Cs, Ta) pegmatite deposit in North Qinling Orogen (NQO), central China. Fluorluanshiweiite can be regarded as the F-dominant analogue at the A site of luanshiweiite or the K-dominant analogue at the I site of voloshinite. It appears mostly in cookeite as a flaky residue, replaced by Cs-rich mica, or in the form of scale aggregates. Most individual grains are <1 mm in size, with the largest being ca. 1 cm, and the periphery is replaced by cookeite. No twinning is observed. The mineral is silvery white as a hand specimen, and in a thin section, it appears grayish-white to colorless, transparent with white streaks, with vitreous luster and pearliness on cleavage faces. It is flexible with micaceous fracture; the Mohs hardness is approximately 3; the cleavage is perfect on {001}; and no parting is observed. The measured and calculated densities are 2.94(3) and 2.898 g/cm3, respectively. Optically, fluorluanshiweiite is biaxial (–), with α = 1.554(1), β = 1.581(1), γ = 1.583(1) (white light), 2V(meas.) = 25° to 35°, 2V(calc.) = 30.05°. The calculated compatibility index based on the empirical formula is −0.014 (superior). An electron microprobe analysis yields the empirical formula calculated based on 10 O atoms and 2 additional anions of (K0.85Rb0.12Cs0.02Na0.03)Σ1.02[Li1.05Al1.44(â–¡0.47Fe0.01Mn0.02)Σ0.5] Σ2.99(Si3.55Al0.45) Σ4O10F2, which can be simplified to KLiAl1.5â–¡0.5(Si3.5Al0.5)O10F2. Fluorluanshiweiite is monoclinic with the space group C2/m and unit cell parameters a = 5.2030(5), b = 8.9894(6), c = 10.1253(9) Å, β = 100.68(1)°, and V = 465.37(7) Å3. The strongest eight lines in the X-ray diffraction data are [d in Å(I)(hkl)]: 8.427(25) (001), 4.519(57) (020), 4.121(25) (021), 3.628(61) (112), 3.350(60) (022), 3.091(46) (112), 2.586(100) (130), and 1.506(45) (312)

    An advanced MRI and MRSI data fusion scheme for enhancing unsupervised brain tumor differentiation

    No full text
    Proton Magnetic Resonance Spectroscopic Imaging (1H MRSI) has shown great potential in tumor diagnosis since it provides localized biochemical information discriminating different tissue types, though it typically has low spatial resolution. Magnetic Resonance Imaging (MRI) is widely used in tumor diagnosis as an in vivo tool due to its high resolution and excellent soft tissue discrimination. This paper presents an advanced data fusion scheme for brain tumor diagnosis using both MRSI and MRI data to improve the tumor differentiation accuracy of MRSI alone. Non-negative Matrix Factorization (NMF) of the spectral feature vectors from MRSI data and the image fusion with MRI based on wavelet analysis are implemented jointly. Hence, it takes advantage of the biochemical tissue discrimination of MRSI as well as the high resolution of MRI. The feasibility of the proposed frame work is validated by comparing with the expert delineations, giving mean correlation coefficients for the tumor source of 0.97 and the Dice score of tumor region overlap of 0.90. These results compare favorably against those obtained with a previously proposed NMF method where MRSI and MRI are integrated by stacking the MRSI and MRI features.publisher: Elsevier articletitle: An advanced MRI and MRSI data fusion scheme for enhancing unsupervised brain tumor differentiation journaltitle: Computers in Biology and Medicine articlelink: http://dx.doi.org/10.1016/j.compbiomed.2016.12.017 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved.status: publishe

    The effect of cutting speed on residual stresses when orthogonal cutting TC4

    No full text
    As one of the most important parameters in mental cutting, cutting speed has a significant influence on residual stress. Finite element method and experiment method are used to study the relationship between cutting speed and residual stress when orthogonal cutting TC4 titanium alloy. The result of simulation and experiment shows that: when the cutting speed is low, the residual stress in axial direction is compressive stress and gradually converts to tensile stress with the increase of cutting speed, but it will convert to compressive stress again if the cutting speed continues to increase; the residual stress in tangential direction is constant to compressive stress and it will decrease with the increase of cutting speed
    corecore