3,550 research outputs found
Recursive relations for a quiver gauge theory
We study the recursive relations for a quiver gauge theory with the gauge
group with bifundamental fermions transforming as
. We work out the recursive relation for the amplitudes
involving a pair of quark and antiquark and gluons of each gauge group. We
realize directly in the recursive relations the invariance under the order
preserving permutations of the gluons of the first and the second gauge group.
We check the proposed relations for MHV, 6-point and 7-point amplitudes and
find the agreements with the known results and the known relations with the
single gauge group amplitudes. The proposed recursive relation is much more
efficient in calculating the amplitudes than using the known relations with the
amplitudes of the single gauge group.Comment: 33 pages and 2 figures, minor correction
A Droplet State in an Interacting Two-Dimensional Electron System
It is well known that the dielectric constant of two-dimensional (2D)
electron system goes negative at low electron densities. A consequence of the
negative dielectric constant could be the formation of the droplet state. The
droplet state is a two-phase coexistence region of high density liquid and low
density "gas". In this paper, we carry out energetic calculations to study the
stability of the droplet ground state. The possible relevance of the droplet
state to recently observed 2D metal-insulator transition is also discussed.Comment: 4 pages, 4 figures. To appear in Phys. Rev. B (Rapid Communications
Continuous function optimization using hybrid ant colony approach with orthogonal design scheme
A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) algorithm for continuous function optimization (CFO) is presented in this paper. The methodology integrates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design Scheme (ODS). OSACO is based on the following principles: a) each independent variable space (IVS) of CFO is dispersed into a number of random and movable nodes; b) the carriers of pheromone of ACO are shifted to the nodes; c) solution path can be obtained by choosing one appropriate node from each IVS by ant; d) with the ODS, the best solved path is further improved. The proposed algorithm has been successfully applied to 10 benchmark test functions. The performance and a comparison with CACO and FEP have been studied
Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios
Measurements of explosive nucleosynthesis yields in core-collapse supernovae
provide tests for explosion models. We investigate constraints on explosive
conditions derivable from measured amounts of nickel and iron after radioactive
decays using nucleosynthesis networks with parameterized thermodynamic
trajectories. The Ni/Fe ratio is for most regimes dominated by the production
ratio of 58Ni/(54Fe + 56Ni), which tends to grow with higher neutron excess and
with higher entropy. For SN 2012ec, a supernova that produced a Ni/Fe ratio of
times solar, we find that burning of a fuel with neutron excess
is required. Unless the progenitor metallicity
is over 5 times solar, the only layer in the progenitor with such a neutron
excess is the silicon shell. Supernovae producing large amounts of stable
nickel thus suggest that this deep-lying layer can be, at least partially,
ejected in the explosion. We find that common spherically symmetric models of
Msun stars exploding with a delay time of less than
one second ( Msun) are able to achieve such silicon-shell
ejection. Supernovae that produce solar or sub-solar Ni/Fe ratios, such as SN
1987A, must instead have burnt and ejected only oxygen-shell material, which
allows a lower limit to the mass cut to be set. Finally, we find that the
extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be
reproduced by any realistic-entropy burning outside the iron core, and
neutrino-neutronization obtained in electron-capture models remains the only
viable explanation.Comment: 13 pages, 9 figures, accepted for publication in Ap
Electron Cloud and Beam Scrubbing in the LHC
An adequate dose of photoelectrons, accelerated by low-intensity proton bunches and hitting the LHC beam screen wall, will substantially reduce secondary emission and avoid the fast build-up of an electron cloud for the nominal LHC beam. The conditioning period of the liner surface can be considerably shortened thanks to secondary electrons, provided heat load and beam stability can be kept under control; for example this may be possible using a special proton beam, including satellite bunches with an intensity of 15-20% of the nominal bunch intensity and a spacing of one or two RF wavelengths. Based on recent measurements of secondary electron emission, on multipacting tests and simulation results, we discuss possible "beam scrubbing" scenarios in the LHC and present an updat
Isospin dependence of relative yields of and mesons at 1.528 AGeV
Results on and meson production in Ru +
Ru and Zr + Zr collisions at a beam kinetic
energy of 1.528 GeV, measured with the FOPI detector at GSI-Darmstadt, are
investigated as a possible probe of isospin effects in high density nuclear
matter. The measured double ratio ()/() is
compared to the predictions of a thermal model and a Relativistic Mean Field
transport model using two different collision scenarios and under different
assumptions on the stiffness of the symmetry energy. We find a good agreement
with the thermal model prediction and the assumption of a soft symmetry energy
for infinite nuclear matter while more realistic transport simulations of the
collisions show a similar agreement with the data but also exhibit a reduced
sensitivity to the symmetry term.Comment: 5 pages, 3 figures. accepted for publication in Phys. Rev.
Two-proton small-angle correlations in central heavy-ion collisions: a beam-energy and system-size dependent study
Small-angle correlations of pairs of protons emitted in central collisions of
Ca + Ca, Ru + Ru and Au + Au at beam energies from 400 to 1500 MeV per nucleon
are investigated with the FOPI detector system at SIS/GSI Darmstadt.
Dependences on system size and beam energy are presented which extend the
experimental data basis of pp correlations in the SIS energy range
substantially. The size of the proton-emitting source is estimated by comparing
the experimental data with the output of a final-state interaction model which
utilizes either static Gaussian sources or the one-body phase-space
distribution of protons provided by the BUU transport approach. The trends in
the experimental data, i.e. system-size and beam energy dependences, are well
reproduced by this hybrid model. However, the pp correlation function is found
rather insensitive to the stiffness of the equation of state entering the
transport model calculations.Comment: 9 pages, 8 figures, accepted at Eur. Phys. Journ.
Sulphonylurea Usage in Melioidosis Is Associated with Severe Disease and Suppressed Immune Response
10.1371/journal.pntd.0002795PLoS Neglected Tropical Diseases84
Charged pion production in Ru+Ru collisions at 400A and 1528A MeV
We present transverse momentum and rapidity spectra of charged pions in
central Ru + Ru collisions at 400 and 1528 MeV. The data exhibit enhanced
production at low transverse momenta compared to the expectations from the
thermal model that includes the decay of -resonances and thermal
pions. Modification of the -spectral function and the Coulomb
interaction are necessary to describe the detailed shape of the transverse
momentum spectra. Within the framework of the thermal model, the freeze-out
radii of pions are similar at both beam energies. The IQMD model reproduces the
shapes of the transverse momentum and rapidity spectra of pions, but the
predicted absolute yields are larger than in the measurements, especially at
lower beam energy.Comment: 12 pages, 11 figure
- …
