2 research outputs found

    Oxygen: From Toxic Waste to Optimal (Toxic) Fuel of Life

    Get PDF
    Some 2.5 billion years ago, the great oxygenation event (GOE) led to a 105‐fold rise in atmospheric oxygen [O2], killing most species on Earth. In spite of the tendency to produce toxic reactive oxygen species (ROS), the highly exergonic reduction of O2 made it the ideal biological electron acceptor. During aerobic metabolism, O2 is reduced to water liberating energy, which is coupled to adenosine triphosphate (ATP) synthesis. Today, all organisms either aerobic or not need to deal with O2 toxicity. O2‐permeant organisms need to seek adequate [O2], for example, aquatic crustaceans bury themselves in the sea bottom where O2 is scarce. Also, the intestinal lumen and cytoplasm of eukaryotes is a microaerobic environment where many facultative bacteria or intracellular symbionts hide from oxygen. Organisms such as plants, fish, reptiles and mammals developed O2‐impermeable epithelia, plus specialized external respiratory systems in combination with O2‐binding proteins such as hemoglobin or leg‐hemoglobin control [O2] in tissues. Inside the cell, ROS production is prevented by rapid O2 consumption during the oxidative phosphorylation (OxPhos) of ATP. When ATP is in excess, OxPhos becomes uncoupled in an effort to continue eliminating O2. Branched respiratory chains, unspecific pores and uncoupling proteins (UCPs) uncouple OxPhos. One last line of resistance against ROS is deactivation by enzymes such as super oxide dismutase and catalase. Aerobic organisms profit from the high energy released by the reduction of O2, while at the same time they need to avoid the toxicity of ROS

    Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain

    No full text
    corecore