9 research outputs found

    Handy sufficient conditions for the convergence of the maximum likelihood estimator in observation-driven models

    Full text link
    This paper generalizes asymptotic properties obtained in the observation-driven times series models considered by \cite{dou:kou:mou:2013} in the sense that the conditional law of each observation is also permitted to depend on the parameter. The existence of ergodic solutions and the consistency of the Maximum Likelihood Estimator (MLE) are derived under easy-to-check conditions. The obtained conditions appear to apply for a wide class of models. We illustrate our results with specific observation-driven times series, including the recently introduced NBIN-GARCH and NM-GARCH models, demonstrating the consistency of the MLE for these two models

    Necessary and sufficient conditions for the identifiability of observation-driven models

    Get PDF
    In this contribution we are interested in proving that a given observation-driven model is identifiable. In the case of a GARCH(p, q) model, a simple sufficient condition has been established in [1] for showing the consistency of the quasi-maximum likelihood estimator. It turns out that this condition applies for a much larger class of observation-driven models, that we call the class of linearly observation-driven models. This class includes standard integer valued observation-driven time series, such as the log-linear Poisson GARCH or the NBIN-GARCH models

    GENERAL-ORDER OBSERVATION-DRIVEN MODELS: ERGODICITY AND CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR

    Get PDF
    The class of observation-driven models (ODMs) includes the GARCH(1, 1) model as well as integer-valued time series models such as the log-linear Poisson GARCH of order (1, 1) and the NBIN-GARCH(1, 1) models. In this contribution, we treat the case of general-order ODMs in a similar fashion as the extension of the GARCH(1, 1) model to the GARCH(p, q) model. More precisely, we establish the stationarity and the ergodicity as well as the consistency and the asymptotic normality of the maximum likelihood estimator (MLE) for the class of general-order ODMs, under conditions which are easy to verify. We illustrate these results with specific observation-driven time series, namely, the log-linear Poisson GARCH of order (p, q) and the NBIN-GARCH(p, q) models. An empirical study is also provided

    Identifiability conditions for partially-observed Markov chains

    No full text
    We consider parametric models of partially-observed bivariate Markov chains. If the model is well-specified, we show under quite general conditions that the limiting normalizedlog-likelihood is maximized only by parameters for which the stationarydistribution is the same as the one of the true parameter. This is a keyfeature for obtaining the consistencyof the Maximum Likelihood Estimators (MLE), in cases where the parameter maynot be identifiable. The specific cases of Hidden Markov Models and Observation-driven timeseries are investigated. In contrast with previous approaches, this result isestablished by relying on the unicity of the invariant distribution of theMarkov chain associated to the complete data, regardless its rate ofconvergence to the equilibrium. </p

    Maximum likelihood estimation in partially observed Markov models with applications to time series of counts

    No full text
    L'estimation du maximum de vraisemblance est une méthode répandue pour l'identification d'un modèle paramétré de série temporelle à partir d'un échantillon d'observations. Dans le cadre de modèles bien spécifiés, il est primordial d'obtenir la consistance de l'estimateur, à savoir sa convergence vers le vrai paramètre lorsque la taille de l'échantillon d'observations tend vers l'infini. Pour beaucoup de modèles de séries temporelles, par exemple les modèles de Markov cachés ou « hidden Markov models »(HMM), la propriété de consistance « forte » peut cependant être dfficile à établir. On peut alors s'intéresser à la consistance de l'estimateur du maximum de vraisemblance (EMV) dans un sens faible, c'est-à-dire que lorsque la taille de l'échantillon tend vers l'infini, l'EMV converge vers un ensemble de paramètres qui s'associent tous à la même distribution de probabilité des observations que celle du vrai paramètre. La consistance dans ce sens, qui reste une propriété privilégiée dans beaucoup d'applications de séries temporelles, est dénommée consistance de classe d'équivalence. L'obtention de la consistance de classe d'équivalence exige en général deux étapes importantes : 1) montrer que l'EMV converge vers l'ensemble qui maximise la log-vraisemblance normalisée asymptotique ; et 2) montrer que chaque paramètre dans cet ensemble produit la même distribution du processus d'observation que celle du vrai paramètre. Cette thèse a pour objet principal d'établir la consistance de classe d'équivalence des modèles de Markov partiellement observés, ou « partially observed Markov models » (PMM), comme les HMM et les modèles « observation-driven » (ODM).Maximum likelihood estimation is a widespread method for identifying a parametrized model of a time series from a sample of observations. Under the framework of well-specified models, it is of prime interest to obtain consistency of the estimator, that is, its convergence to the true parameter as the sample size of the observations goes to infinity. For many time series models, for instance hidden Markov models (HMMs), such a “strong” consistency property can however be difficult to establish. Alternatively, one can show that the maximum likelihood estimator (MLE) is consistent in a weakened sense, that is, as the sample size goes to infinity, the MLE eventually converges to a set of parameters, all of which associate to the same probability distribution of the observations as for the true one. The consistency in this sense, which remains a preferred property in many time series applications, is referred to as equivalence-class consistency. The task of deriving such a property generally involves two important steps: 1) show that the MLE converges to the maximizing set of the asymptotic normalized loglikelihood; and 2) show that any parameter in this maximizing set yields the same distribution of the observation process as for the true parameter. In this thesis, our primary attention is to establish the equivalence-class consistency for time series models that belong to the class of partially observed Markov models (PMMs) such as HMMs and observation-driven models (ODMs)

    Estimation du maximum de vraisemblance dans les modèles de Markov partiellement observés avec des applications aux séries temporelles de comptage

    No full text
    Maximum likelihood estimation is a widespread method for identifying a parametrized model of a time series from a sample of observations. Under the framework of well-specified models, it is of prime interest to obtain consistency of the estimator, that is, its convergence to the true parameter as the sample size of the observations goes to infinity. For many time series models, for instance hidden Markov models (HMMs), such a “strong” consistency property can however be difficult to establish. Alternatively, one can show that the maximum likelihood estimator (MLE) is consistent in a weakened sense, that is, as the sample size goes to infinity, the MLE eventually converges to a set of parameters, all of which associate to the same probability distribution of the observations as for the true one. The consistency in this sense, which remains a preferred property in many time series applications, is referred to as equivalence-class consistency. The task of deriving such a property generally involves two important steps: 1) show that the MLE converges to the maximizing set of the asymptotic normalized loglikelihood; and 2) show that any parameter in this maximizing set yields the same distribution of the observation process as for the true parameter. In this thesis, our primary attention is to establish the equivalence-class consistency for time series models that belong to the class of partially observed Markov models (PMMs) such as HMMs and observation-driven models (ODMs).L'estimation du maximum de vraisemblance est une méthode répandue pour l'identification d'un modèle paramétré de série temporelle à partir d'un échantillon d'observations. Dans le cadre de modèles bien spécifiés, il est primordial d'obtenir la consistance de l'estimateur, à savoir sa convergence vers le vrai paramètre lorsque la taille de l'échantillon d'observations tend vers l'infini. Pour beaucoup de modèles de séries temporelles, par exemple les modèles de Markov cachés ou « hidden Markov models »(HMM), la propriété de consistance « forte » peut cependant être dfficile à établir. On peut alors s'intéresser à la consistance de l'estimateur du maximum de vraisemblance (EMV) dans un sens faible, c'est-à-dire que lorsque la taille de l'échantillon tend vers l'infini, l'EMV converge vers un ensemble de paramètres qui s'associent tous à la même distribution de probabilité des observations que celle du vrai paramètre. La consistance dans ce sens, qui reste une propriété privilégiée dans beaucoup d'applications de séries temporelles, est dénommée consistance de classe d'équivalence. L'obtention de la consistance de classe d'équivalence exige en général deux étapes importantes : 1) montrer que l'EMV converge vers l'ensemble qui maximise la log-vraisemblance normalisée asymptotique ; et 2) montrer que chaque paramètre dans cet ensemble produit la même distribution du processus d'observation que celle du vrai paramètre. Cette thèse a pour objet principal d'établir la consistance de classe d'équivalence des modèles de Markov partiellement observés, ou « partially observed Markov models » (PMM), comme les HMM et les modèles « observation-driven » (ODM)
    corecore