6,105 research outputs found

    Spectral sequences of Type Ia supernovae. I. Connecting normal and sub-luminous SN Ia and the presence of unburned carbon

    Get PDF
    Type Ia supernovae are generally agreed to arise from thermonuclear explosions of carbon-oxygen white dwarfs. The actual path to explosion, however, remains elusive, with numerous plausible parent systems and explosion mechanisms suggested. Observationally, type Ia supernovae have multiple subclasses, distinguished by their lightcurves and spectra. This raises the question whether these reflect that multiple mechanisms occur in nature, or instead that explosions have a large but continuous range of physical properties. We revisit the idea that normal and 91bg-like supernovae can be understood as part of a spectral sequence, in which changes in temperature dominate. Specifically, we find that a single ejecta structure is sufficient to provide reasonable fits of both the normal type Ia supernova SN~2011fe and the 91bg-like SN~2005bl, provided that the luminosity and thus temperature of the ejecta are adjusted appropriately. This suggests that the outer layers of the ejecta are similar, thus providing some support of a common explosion mechanism. Our spectral sequence also helps to shed light on the conditions under which carbon can be detected in pre-maximum SN~Ia spectra -- we find that emission from iron can "fill in" the carbon trough in cool SN~Ia. This may indicate that the outer layers of the ejecta of events in which carbon is detected are relatively metal poor compared to events where carbon is not detected

    Multiparticle Interference, GHZ Entanglement, and Full Counting Statistics

    Full text link
    We investigate the quantum transport in a generalized N-particle Hanbury Brown--Twiss setup enclosing magnetic flux, and demonstrate that the Nth-order cumulant of current cross correlations exhibits Aharonov-Bohm oscillations, while there is no such oscillation in all the lower-order cumulants. The multiparticle interference results from the orbital Greenberger-Horne-Zeilinger entanglement of N indistinguishable particles. For sufficiently strong Aharonov-Bohm oscillations the generalized Bell inequalities may be violated, proving the N-particle quantum nonlocality.Comment: 4 pages, 1 figure, published versio

    Spectral modeling of type II supernovae. I. Dilution factors

    Full text link
    We present substantial extensions to the Monte Carlo radiative transfer code TARDIS to perform spectral synthesis for type II supernovae. By incorporating a non-LTE ionization and excitation treatment for hydrogen, a full account of free-free and bound-free processes, a self-consistent determination of the thermal state and by improving the handling of relativistic effects, the improved code version includes the necessary physics to perform spectral synthesis for type II supernovae to high precision as required for the reliable inference of supernova properties. We demonstrate the capabilities of the extended version of TARDIS by calculating synthetic spectra for the prototypical type II supernova SN1999em and by deriving a new and independent set of dilution factors for the expanding photosphere method. We have investigated in detail the dependence of the dilution factors on photospheric properties and, for the first time, on changes in metallicity. We also compare our results with two previously published sets of dilution factors by Eastman et al. (1996) and by Dessart & Hillier (2005), and discuss the potential sources of the discrepancies between studies.Comment: 16 pages, 12 figures, 2 tables, accepted for publication in A&

    A Web/Grid Services Approach for Integration of Virtual Clinical & Research Environments

    No full text
    Clinicans have responsibilities for audit and research, often participating in projects with basic scientist colleagues. Our work in a regional teaching hospital setting involves collaboration with the medical school computer services and builds upon work developed in computer science department as part of the Collaborative Orthopaedic Research Environment (CORE) project[1]. This has established a pilot study for proof of concept work. Users are mapped to a personal profile implemented using XML and a service oriented architecture (SOA)[2,3]. This bridges the e-Health and e-Science domains, addressing some of the basic questions of security and uptake

    Electron Pair Resonance in the Coulomb Blockade

    Full text link
    We study many-body corrections to the cotunneling current via a localized state with energy ϵd\epsilon_d at large bias voltages VV. We show that the transfer of {\em electron pairs}, enabled by the Coulomb repulsion in the localized level, results in ionization resonance peaks in the third derivative of the current with respect to VV, centered at eV=±2ϵd/3eV=\pm 2\epsilon_d/3. Our results predict the existence of previously unnoticed structure within Coulomb-blockade diamonds.Comment: 5 pages, 4 figure

    On the gamma-ray emission of Type Ia Supernovae

    Full text link
    A multi-dimension, time-dependent Monte Carlo code is used to compute sample gamma-ray spectra to explore whether unambiguous constraints could be obtained from gamma-ray observations of Type Ia supernovae. Both spherical and aspherical geometries are considered and it is shown that moderate departures from sphericity can produce viewing-angle effects that are at least as significant as those caused by the variation of key parameters in one-dimensional models. Thus gamma-ray data could in principle carry some geometrical information, and caution should be applied when discussing the value of gamma-ray data based only on one-dimensional explosion models. In light of the limited sensitivity of current gamma-ray observatories, the computed theoretical spectra are studied to revisit the issue of whether useful constraints could be obtained for moderately nearby objects. The most useful gamma-ray measurements are likely to be of the light curve and time-dependent hardness ratios, but sensitivity higher than currently available, particularly at relatively hard energies (~2-3 MeV), is desirable.Comment: 10 pages, 8 figures. Accepted by MNRAS. Minor changes to clarify discussion in Section
    • …
    corecore