11 research outputs found

    IL-17 mediates articular hypernociception in antigen-induced arthritis in mice

    No full text
    IL-17 is an important cytokine in the physiopathology of rheumatoid arthritis (RA). However, its participation in the genesis of nociception during RA remains undetermined. In this study, we evaluated the role of IL-17 in the genesis of articular nociception in a model of antigen (mBSA)-induced arthritis. We found that mBSA challenge in the femur-tibial joint of immunized mice induced a dose- and time-dependent mechanical hypernociception. The local IL-17 concentration within the mBSA-injected joints increased significantly over time. Moreover, co-treatment of mBSA challenged mice with an antibody against IL-17 inhibited hypernociception and neutrophil recruitment. In agreement, intraarticular injection of IL-17 induced hypernociception and neutrophil migration, which were reduced by the pre-treatment with fucoidin, a leukocyte adhesion inhibitor. The hypernociceptive effect of IL-17 was also reduced in TNFR1-/- mice and by pre-treatment with infliximab (anti-TNF antibody), a CXCR1/2 antagonist or by an IL-1 receptor antagonist. Consistent with these findings, we found that IL-17 injection into joints increased the production of TNF-α, IL-1β and CXCL1/KC. Treatment with doxycycline (non-specific MMPs inhibitor), bosentan (ETA/ETB antagonist), indomethacin (COX inhibitor) or guanethidine (sympathetic blocker) inhibited IL-17-induced hypernociception. IL-17 injection also increased PGE2 production, MMP-9 activity and COX-2, MMP-9 and PPET-1 mRNA expression in synovial membrane. These results suggest that IL-17 is a novel pro-nociceptive cytokine in mBSA-induced arthritis, whose effect depends on both neutrophil migration and various pro-inflammatory mediators, as TNF-α, IL-1β, CXCR1/2 chemokines ligands, MMPs, endothelins, prostaglandins and sympathetic amines. Therefore, it is reasonable to propose IL-17 targeting therapies to control this important RA symptom. © 2009 International Association for the Study of Pain

    Regulation of type 17 helper T-cell function by nitric oxide during inflammation

    No full text
    Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2−/−) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants

    Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation

    No full text
    Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg-1) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-α and IL-1β in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site. © 2008 The Authors

    Gastro-protective effects of isobrucein B, a quassinoid isolated from Picrolemma sprucei

    No full text
    Infusions of Picrolemma sprucei roots, stems and leaves are used in traditional medicine throughout the Amazon region from the Guianas to Brazil and Peru in the treatment of gastritis, intestinal helminths and malaria. As there are no studies describing its mode of action in providing a gastroprotective effect, we determined herein that one of the main constituents found in P. sprucei infusions, the quassinoid isobrucein B (IsoB), reduces some of the pathophysiological effects in a mouse model of non-steroidal anti-inflammatory drug (NSAID)-induced gastritis and provides mechanisms of action. Then, IsoB (1.17 g) was isolated from the roots and stems (6.5 kg) of P. sprucei. Its structure was confirmed by 1D and 2D 1H and 13C NMR, ESI-tof-MS, IR and UV. C57BL/6 strain mice were subcutaneously injected with IsoB (0.5-5 mg kg- 1) or vehicle before oral administration of indomethacin and sacrificed later at different time points. Gastric damage was assessed by measuring lesion length. Leukocyte migration was evaluated based on leukocyte rolling and adhesion using intravital microscopy in the mesenteric microcirculation and tissue MPO activity. Stomach extract cytokine (TNFα, IL-1β and KC/CXCL1) and prostaglandin E2 (PGE2) levels were measured by ELISA and RIA, respectively. IsoB pre-treatment (0.5-5.0 mg kg- 1) significantly reduced the formation of indomethacin-induced stomach lesions in a dose-dependent manner. The decrease in stomach lesions was associated with less observed leukocyte rolling, decreased leukocyte adhesion and less neutrophil infiltration (MPO activity). IsoB (1 mg kg- 1) pre-treatment did not prevent indomethacin-induced decreases in stomach PGE2 levels. However, IL-1β and KC/CXCL1 levels were inhibited by this same IsoB dosage, whereas TNF-α was unchanged. IsoB may be a prototypic compound to provide protective effects against NSAID-induced gastritis and possibly other gastropathies. Moreover, IsoB gastroprotective action may be due to a reduction in IL-1β and KC/CXCL1 production/release and leukocyte rolling, adhesion and migration. © 2014 Elsevier B.V

    Activation of peripheral κ/δ opioid receptors mediates 15-deoxy-Δ12,14-prostaglandin J2 induced-antinociception in rat temporomandibular joint

    No full text
    This study assessed the effect of the agonist 15d- PGJ2 administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ2 into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-γ (PPAR-γ) since pre-treatment with GW9662 (PPAR-γ receptor antagonist) blocked the antinociceptive effect of 15d-PGJ2 in the TMJ. In addition, the antinociceptive effect of 15d-PGJ2 was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with κ, δ, but not μ receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ2 in the TMJ. Similarly to opioid agonists, the 15d-PGJ2 antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K+ATP) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K+ATP (glibenclamide). In addition, 15d-PGJ2 (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ2 showed lower vascular permeability, assessed by Evan's Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ2 has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-γ activation. The results also suggest that 15d-PGJ2 induced-peripheral antinociceptive response in the TMJ is mediated by κ/δ opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K+ATP channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ2 highlight the potential use of this PPAR-γ agonist on TMJ inflammatory pain conditions. © 2009 IBRO

    The quassinoid isobrucein B reduces inflammatory hyperalgesia and cytokine production by post-transcriptional modulation

    No full text
    Isobrucein B (1) is a quassinoid isolated from the Amazonian medicinal plant Picrolemma sprucei. Herein we investigate the anti-inflammatory and antihyperalgesic effects of this quassinoid. Isobrucein B (1) (0.5-5 mg/kg) inhibited carrageenan-induced inflammatory hyperalgesia in mice in a dose-dependent manner. Reduced hyperalgesia was associated with reduction in both neutrophil migration and pronociceptive cytokine production. Pretreatment with 1 inhibited in vitro production/release of cytokines TNF, IL-1β, and KC/CXCL1 by lipopolysaccharide-stimulated macrophages. To investigate its molecular mechanism, RAW 264.7 macrophages with a luciferase reporter gene controlled by the NF-κB promoter were used (RAW 264.7-Luc). Quassinoid 1 reduced the luminescence emission by RAW 264.7-Luc stimulated by different compounds. Unexpectedly, NF-κB translocation to macrophage nuclei was not inhibited by 1 when evaluated by Western blotting and immunofluorescence. Furthermore, quassinoid 1 did not change the levels of TNF mRNA transcription in stimulated macrophages, suggesting post-transcriptional modulation. In addition, constitutive expression of luciferase in RAW 264.7 cells transiently transfected with a plasmid containing a universal promoter was inhibited by 1. Thus, isobrucein B (1) displays anti-inflammatory and antihyperalgesic activities by nonselective post-transcriptional modulation, resulting in decreased production/release of pro-inflammatory cytokines and neutrophil migration. © 2015 The American Chemical Society and American Society of Pharmacognosy

    Peroxisome proliferator-activated receptor-γ ligand, 15-deoxy-Δ12,14-prostaglandin J2, reduces neutrophil migration via a nitric oxide pathway

    No full text
    Ligands for peroxisome proliferator-activated receptor γ (PPAR-γ), such as 15-deoxy-Δ12,14-prostaglandin J 2 (15d-PGJ2) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ 2-mediated activation of PPAR-γ ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ 2 administration decreases leukocyte rolling and adhesion to the inflammated mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ 2-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS-/- mice were not susceptible to 15d-PGJ2-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ 2-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, upregulation of carrageenan-triggered ICAM-1 expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ2, whereas 15d-PGJ 2 inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ2 suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues. Copyright © 2007 by The American Association of Immunologists, Inc
    corecore