8 research outputs found

    Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis

    Get PDF
    Introduction Retinoic acid signaling plays key roles in embryonic development and in maintaining the differentiated status of adult tissues. Recently, the nuclear retinoic acid receptor (RAR) isotypes α, β and γ were found to play specific functions in the expansion and differentiation of the stem compartments of various tissues. For instance, RARγ appears to be involved in stem cell compartment expansion, while RARα and RARβ are implicated in the subsequent cell differentiation. We found that over-expressing c-Myc in normal mouse mammary epithelium and in a c-Myc-driven transgenic model of mammary cancer, disrupts the balance between RARγ and RARα/β in favor of RARγ. Methods The effects of c-Myc on RAR isotype expression were evaluated in normal mouse mammary epithelium, mammary tumor cells obtained from the MMTV-Myc transgenic mouse model as well as human normal immortalized breast epithelial and breast cancer cell lines. The in vivo effect of the RARα-selective agonist 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)carboxamido]benzoic acid (Am580) was examined in the MMTV-Myc mouse model of mammary tumorigenesis. Results Modulation of the RARα/β to RARγ expression in mammary glands of normal mice, oncomice, and human mammary cell lines through the alteration of RAR-target gene expression affected cell proliferation, survival and tumor growth. Treatment of MMTV-Myc mice with the RARα-selective agonist Am580 led to significant inhibition of mammary tumor growth (~90%, P\u3c0.001), lung metastasis (P\u3c0.01) and extended tumor latency in 63% of mice. Immunocytochemical analysis showed that in these mice, RARα responsive genes such as Cyp26A1, E-cadherin, cellular retinol-binding protein 1 (CRBP1) and p27, were up-regulated. In contrast, the mammary gland tumors of mice that responded poorly to Am580 treatment (37%) expressed significantly higher levels of RARγ. In vitro experiments indicated that the rise in RARγ was functionally linked to promotion of tumor growth and inhibition of differentiation. Thus, activation of the RARα pathway is linked to tumor growth inhibition, differentiation and cell death. Conclusions The functional consequence of the interplay between c-Myc oncogene expression and the RARγ to RARα/β balance suggests that prevalence of RARγ over-RARα/β expression levels in breast cancer accompanied by c-Myc amplification or over-expression in breast cancer should be predictive of response to treatment with RARα-isotype-specific agonists and warrant monitoring during clinical trials. See related editorial by Garattini et al http://breast-cancer-research.com/content/14/5/11

    Epigenetic <it>CRBP </it>downregulation appears to be an evolutionarily conserved (human and mouse) and oncogene-specific phenomenon in breast cancer

    No full text
    Abstract Background The cellular retinol binding protein I gene (CRBP) is downregulated in a subset of human breast cancers and in MMTV-Myc induced mouse mammary tumors. Functional studies suggest that CRBP downregulation contributes to breast tumor progression. What is the mechanism underlying CRBP downregulation in cancer? Here we investigated the hypothesis that CRBP is epigenetically silenced through DNA hypermethylation in human and mouse breast cancer. Results Bisulfite sequencing of CRBP in a panel of 6 human breast cancer cell lines demonstrated that, as a rule, CRBP hypermethylation is closely and inversely related to CRBP expression and identified one exception to this rule. Treatment with 5-azacytidine, a DNA methyltransferase inhibitor, led to CRBP reexpression, supporting the hypothesis that CRBP hypermethylation is a proximal cause of CRBP silencing. In some cells CRBP reexpression was potentiated by co-treatment with retinoic acid, an inducer of CRBP, and trichostatin A, a histone deacetylase inhibitor. Southern blot analysis of a small panel of human breast cancer specimens identified one case characterized by extensive CRBP hypermethylation, in association with undetectable CRBP mRNA and protein. Bisulfite sequencing of CRBP in MMTV-Myc and MMTV-Neu/NT mammary tumor cell lines extended the rule of CRBP hypermethylation and silencing (both seen in MMTV-Myc but not MMTV-Neu/NT cells) from human to mouse breast cancer and suggested that CRBP hypermethylation is an oncogene-specific event. Conclusion CRBP hypermethylation appears to be an evolutionarily conserved and principal mechanism of CRBP silencing in breast cancer. Based on the analysis of transgenic mouse mammary tumor cells, we hypothesize that CRBP silencing in human breast cancer may be associated with a specific oncogenic signature.</p

    The Black Polymorph of TTF-CA: TTF Polymorphism and Solvent Effects in Mechanochemical and Vapor Digestion Syntheses, FT-IR, Crystal Packing, and Electronic Structure

    Get PDF
    Tetrathiafulvalene-chloranil (TTF-CA) was synthesized by two methods, liquid assisted grinding (LAG) and vapor digestion (VD), which largely reduce the use of reaction solvents. The effects of the small quantities of LAG solvent and solvent vapors in VD toward the formation of a particular TTF-CA product polymorph were studied from both tetrathiafulvalene forms (orange and brown) as reactants. It was concluded that a high solvent polarity index favors the formation of the ionic black polymorph of TTF-CA vs the quasineutral green form, whereas the crystal structure and crystal habit of the orange tetrathiafulvalene polymorph also favors the formation of the black TTF-CA. The crystal structure of the black TTF-CA was determined from synchrotron X-ray powder diffraction (XRPD), and it consists of dimerized TTF+• and CA−• radical ions, in agreement with room temperature magnetic susceptibility measurements indicating the material is diamagnetic. FT-IR showed that the compound is a semiconductor with a small band gap of ∼0.198 eV and it remains ionic at low temperatures. The latter was confirmed by XRPD showing the black TTF-CA does not undergo a phase transition in the range 298−20 K. Band structure calculations are in good agreement with the measured band gap.Fil: Lapidus, Saul H.. Stony Brook University; Estados UnidosFil: Naik, Amit. Thomas Nelson Community College; Estados UnidosFil: Wixtrom, Alex. Christopher Newport University; Estados UnidosFil: Massa, Nestor Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; ArgentinaFil: Ta Phuoc, Vinh. UniversitéFrancois Rabelais Tours; FranciaFil: del Campo, Leire. Université d’Orleans; FranciaFil: Lebegue, Sebestien. Université de Lorraine; FranciaFil: Aygyayn, Jaynos G.. Université de Lorraine; FranciaFil: Abdel Fattah, Tarek. Christopher Newport University; Estados UnidosFil: Pagola, Silvina. College of William and Mary; Estados Unido
    corecore