841 research outputs found

    Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19

    Get PDF
    Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson's disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (alpha-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant alpha-syn metabolism

    Epilepsy Phenotypes of Vitamin B6-Dependent Diseases: An Updated Systematic Review

    Get PDF
    Background: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). Patients and methods: We conducted a systematic review of published pediatric cases with a confirmed molecular genetic diagnosis of vitamin B6-dependent epilepsy according to PRISMA guidelines. Data on demographic features, seizure semiology, EEG patterns, neuroimaging, treatment, and developmental outcomes were collected. Results: 497 published patients fulfilled the inclusion criteria. Seizure onset manifested at 59.8 ± 291.6 days (67.8% of cases in the first month of life). Clonic, tonic-clonic, and myoclonic seizures accounted for two-thirds of the cases, while epileptic spasms were observed in 7.6%. Burst-suppression/suppression-burst represented the most frequently reported specific EEG pattern (14.4%), mainly in PLPB, ALDH7A1, and PNPO deficiency. Pyridoxine was administered to 312 patients (18.5% intravenously, 76.9% orally, 4.6% not specified), and 180 also received antiseizure medications. Pyridoxine dosage ranged between 1 and 55 mg/kg/die. Complete seizure freedom was achieved in 160 patients, while a significant seizure reduction occurred in 38. PLP, lysine-restricted diet, and arginine supplementation were used in a small proportion of patients with variable efficacy. Global developmental delay was established in 30.5% of a few patients in whom neurocognitive tests were performed. Conclusions: Despite the wide variability, the most frequent hallmarks of the epilepsy phenotype in patients with vitamin B6-dependent seizures include generalized or focal motor seizure semiology and a burst suppression/suppression burst pattern in EEG

    Amino acids of the Sulfolobus solfataricus mini-chromosome maintenance-like DNA helicase involved in DNA binding/remodeling.

    Get PDF
    Herein we report the identification of amino acids of the Sulfolobus solfataricus mini-chromosome maintenance (MCM)-like DNA helicase (SsoMCM), which are critical for DNA binding/remodeling. The crystallographic structure of the N-terminal portion (residues 2–286) of the Methanothermobacter thermoautotrophicum MCM protein revealed a dodecameric assembly with two hexameric rings in a head-to-head configuration and a positively charged central channel proposed to encircle DNA molecules. A structure-guided alignment of the M. thermoautotrophicum and S. solfataricus MCM sequences identified positively charged amino acids in SsoMCM that could point to the center of the channel. These residues (Lys-129, Lys-134, His-146, and Lys-194) were changed to alanine. The purified mutant proteins were all found to form homo-hexamers in solution and to retain full ATPase activity. K129A, H146A, and K194A SsoMCMs are unable to bind DNA either in single- or double-stranded form in band shift assays and do not display helicase activity. In contrast, the substitution of lysine 134 to alanine affects only binding to duplex DNA molecules, whereas it has no effect on binding to single-stranded DNA and on the DNA unwinding activity. These results have important implications for the understanding of the molecular mechanism of the MCM DNA helicase action

    High efficiency vibrational technology (HEVT) for cell encapsulation in polymeric microcapsules

    Get PDF
    Poly(methyl-methacrylate) (PMMA) is a biocompatible and non-biodegradable polymer widely used as biomedical material. PMMA microcapsules with suitable dimension and porosity range are proposed to encapsulate live cells useful for tissue regeneration purposes. The aim of this work was to evaluate the feasibility of producing cell-loaded PMMA microcapsules through “high effciency vibrational technology” (HEVT). Preliminary studies were conducted to set up the process parameters for PMMA microcapsules production and human dermal fibroblast, used as cell model, were encapsulated in shell/core microcapsules. Microcapsules morphometric analysis through optical microscope and scanning electron microscopy highlighted that uniform microcapsules of 1.2 mm with circular surface pores were obtained by HEVT. Best process conditions used were as follows: frequency of 200 Hz, voltage of 750 V, flow rate of core solution of 10 mL/min, and flow rate of shell solution of 0.5 bar. Microcapsule membrane allowed permeation of molecules with low and medium molecular weight up to 5900 Da and prevented diffusion of high molecular weight molecules (11,000 Da). The yield of the process was about 50% and cell encapsulation efficiency was 27% on total amount. The cell survived and growth up to 72 h incubation in simulated physiologic medium was observed

    Phenobarbital for neonatal seizures:response rate and predictors of refractoriness

    Get PDF
    Background : Phenobarbital is the first-line choice for neonatal seizures treatment, despite a response rate of approximately 45%. Failure to respond to acute anticonvulsants is associated with poor neurodevelopmental outcome, but knowledge on predictors of refractoriness is limited. Objective : To quantify response rate to phenobarbital and to establish variables predictive of its lack of efficacy. Methods : We retrospectively evaluated newborns with electrographically confirmed neonatal seizures admitted between January 1999 and December 2012 to the neonatal intensive care unit of Parma University Hospital (Italy), excluding neonates with status epilepticus. Response was categorized as complete (cessation of clinical and electrographic seizures after phenobarbital administration), partial (reduction but not cessation of electrographic seizures with the first bolus, response to the second bolus), or absent (no response after the second bolus). Multivariate analysis was used to identify independent predictors of refractoriness. Results : Out of 91 newborns receiving phenobarbital, 57 (62.6%) responded completely, 15 (16.5%) partially, and 19 (20.9%) did not respond. Seizure type (p = 0.02), background electroencephalogram (EEG; p ≤ 0.005), and neurologic examination (p ≤ 0.005) correlated with response to phenobarbital. However, EEG (p ≤ 0.02) and seizure type (p ≤ 0.001) were the only independent predictors. Conclusion : Our results suggest a prominent role of neurophysiological variables (background EEG and electrographic-only seizure type) in predicting the absence of response to phenobarbital in high-risk newborns

    Effect of paricalcitol vs calcitriol on hemoglobin levels in chronic kidney disease patients: a randomized trial

    Get PDF
    Recent studies suggest that vitamin D deficiency represents an additional cofactor of renal anemia, with several mechanisms accounting for this relationship. In line with it, the administration of vitamin D or its analogues has been associated with an improvement of anemia. There are no data, however, about a direct effect of paricalcitol on hemoglobin (Hb) levels. Therefore, we conducted a study to determine whether paricalcitol, compared to calcitriol, improves anemia in patients with chronic kidney disease (CKD)

    Electrospun tubular vascular grafts to replace damaged peripheral arteries: A preliminary formulation study

    Get PDF
    Polymeric tubular vascular grafts represent a likely alternative to autologous vascular grafts for treating peripheral artery occlusive disease. This preliminary research study applied cutting-edge electrospinning technique for manufacturing prototypes with diameter ≤ 6 mm and based on biocompatible and biodegradable polymers such as polylactide-polycaprolactone, polylactide-co-glycolide and polyhydroxyethylmethacrylate combined in different design approaches (layering and blending). Samples were characterized about fiber morphology, diameter, size distribution, porosity, fluid uptake capability, and mechanical properties. Biocompatibility and cell interaction were evaluated by in vitro test. Goal of this preliminary study was to discriminate among the prototypes and select which composition and design approach could better suit tissue regeneration purposes. Results showed that electrospinning technique is suitable to obtain grafts with a diameter < 6 mm and thickness between 140 ± 7–175 ± 4 μm. Scanning electron microscopy analysis showed fibers with suitable micrometric diameters and pore size between 5 and 35 μm. polyhydroxyethylmethacrylate provided high hydrophilicity (≃ 100◦) and optimal cell short term proliferation (cell viability ≃ 160%) in accordance with maximum fluid uptake ability (300–350%). Moreover, addition of polyhydroxyethylmethacrylate lowered suture retention strength at value < 1 N. Prototypes obtaining combining polylactide-co-glycolide and polylactide-coglycolide/ polyhydroxyethylmethacrylate with polylactide-polycaprolactone in a bilayered structure showed optimal mechanical behavior resembling native bovine vessel

    Reply

    Get PDF
    corecore