8 research outputs found

    The culture medium volume and the inoculation method should be considered in semi-quantitative screening of calcium phosphate solubilization by bacteria

    Get PDF
    Agar media with insoluble phosphates are used for semi-quantitative screening of phosphate-solubilizing bacteria based on the solubilization halo formed around the colonies. We show that the volume of the culture medium (15, 20, and 30 mL) and the inoculation method (toothpick vs microdrop) strongly influence the diameter of the solubilization halo, and this should be considered in advance selection of the isolates most efficient in this process

    Cowpea symbiotic efficiency, pH and aluminum tolerance in nitrogen-fixing bacteria

    Get PDF
    Cowpea (Vigna unguiculata) cultivation in northern and northeastern Brazil provides an excellent source of nutrients and carbohydrates for the poor and underprivileged. Production surplus leads to its consumption in other regions of Brazil and also as an export commodity. Its capacity to establish relationships with atmospheric nitrogen-fixing bacteria is crucial to the reduction of production costs and the environmental impact of nitrogen fertilizers. This study assessed the symbiotic efficiency of new strains of symbiotic nitrogen-fixing bacteria with cowpea and their tolerance to pH and aluminum. Twenty-seven strains of bacteria from different soils were evaluated under axenic conditions. These strains were compared to the following inoculant strains: INPA03-11B, UFLA03-84 and BR3267 and two controls that were not inoculated (with and without mineral nitrogen). Six strains and the three strains approved as inoculants were selected to increase the dry weight production of the aerial part (DWAP) and were tested in pots with soil that had a high-density of nitrogen-fixing native rhizobia. In this experiment, three strains (UFLA03-164, UFLA03-153, and UFLA03-154) yielded higher DWAP values. These strains grow at pH levels of 5.0, 6.0, 6.8 and at high aluminum concentration levels, reaching 10(9) CFU mL-1. In particular UFLA03-84, UFLA03-153, and UFLA03-164 tolerate up to 20 mmol c dm-3 of Al+3. Inoculation with rhizobial strains, that had been carefully selected according to their ability to nodulate and fix N2, combined with their ability to compete in soils that are acidic and contain high levels of Al, is a cheaper and more sustainable alternative that can be made available to farmers than mineral fertilizers

    Agronomic and environmental implications of using a By-Product of the Intermediate Tanning Processes as Nitrogen Fertilizer

    No full text
    Nitrogen (N) is an important nutrient for agriculture, and Brazil is heavily dependent on N imports. A by-product of the intermediate processes of tanning (BPIPT) may be used as an N fertilizer which will reduce this dependency, but its chromium (Cr) content is a matter of concern. This work assessed Cr (III, VI) and N (total, inorganic) contents in four soil samples with contrasting characteristics (especially with respect to their content of manganese (Mn), a potential Cr(III) oxidant), following the addition of the BPIPT. Chemical and microbiological indicators of soil quality were measured to assess the agronomic and environmental implications of the BPIPT addition in Brazilian soils. Our results indicate that the BPIPT is a promising source of N. The originally available Mn content in the soil did not influence the effect of the BPIPT on soil Cr(VI) content. Finally, microbial activity was generally stimulated after BPIPT addition to the soil. This information is relevant because: 1) it shows that the beneficial use of the BPIPT as an N fertilizer is important for adding value to a by-product with agronomic potential; and 2) it indicates that, at the dosage of the BPIPT used in this study (2.5 g kgsoil−1), the typical increases in the soil concentration of labile Cr (0–25 mg kgsoil−1) and Cr(VI) (0–0.8 mg kgsoil−1) due to the application of the BPIPT are not detrimental to biological activity in the soil. However, further investigations are still necessary to evaluate the mobility of these Cr species in the soil and possible risks of groundwater contamination, which were not addressed in this study
    corecore