19 research outputs found

    Search of brain-enriched proteins in salivary extracellular vesicles for their use as mental disease biomarkers: A pilot study of the neuronal glycoprotein M6a

    Get PDF
    Background: Mental disorders affect millions of people worldwide. Their etiology is complex and the fact that the main effects occur in the brain hampers biochemical diagnosis. Therefore, biomarker finding in peripheral fluids such as serum or saliva is desirable. Here, we searched for biomarkers in salivary extracellular vesicles (EVs). Then, we focused on the protein M6a, related to neuronal connectivity and associated with several mood disorders to study its usefulness in saliva for the diagnosis of depression and anxiety. Methods: Biomarker candidates were searched by proteomic analysis of human salivary EVs. M6a presence in salivary EVs was validated by transmission electron microscopy and Western blot. M6a levels were measured by ELISA in saliva samples of 88 individuals classified as control, depressed or anxious. Results: We identified ten protein candidates in salivary EVs: OLIG2, PMP2, CNP, CAMK2A, SLC25A22, MLLT11, HTR2A, MAPT, ATP2B2 and M6a, all associated with emotional disorders. Salivary M6a levels positively correlated with the scores for the perceived stress scale in individuals diagnosed with depression. Furthermore, saliva samples of depressed patients treated with serotonin reuptake inhibitors (SSRI) or benzodiazepines differed in their M6a levels with respect to untreated patients. Limitations: The main limitation of this study lies in the low number of patients involved, which warrants replication. Conclusions: Salivary EVs contain promising biomarker candidates for mental disorders. Further studies will help validate them for their potential use in diagnosis. Our results lead us to propose M6a as a workable molecule to take into account as a possible stress biomarker.Fil: Monteleone, Melisa Carolina. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Billi, Silvia Cristina. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Viale, Luciano. Gobierno de la Provincia de Buenos Aires. Hospital Interzonal Especializado de Agudos y Cronicos San Juan de Dios.; Argentina. Universidad Nacional de San Martín; ArgentinaFil: Catoira, Natalia P.. Gobierno de la Provincia de Buenos Aires. Hospital Interzonal Especializado de Agudos y Cronicos San Juan de Dios.; ArgentinaFil: Frasch, Alberto Carlos C.. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Brocco, Marcela Adriana. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentin

    M6 Membrane Protein Plays an Essential Role in Drosophila Oogenesis

    Get PDF
    We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila

    Anandamide Capacitates Bull Spermatozoa through CB1 and TRPV1 Activation

    Get PDF
    Anandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect. Since sperm detachment may be due to surface remodeling brought about by capacitation, the aim of this paper was to investigate whether anandamide at physiological concentrations could act as a capacitating agent in bull spermatozoa. We demonstrated that at nanomolar concentrations R(+)-methanandamide or anandamide induced bull sperm capacitation, whereas SR141716A and capsazepine (a TRPV1 antagonist) inhibited this induction. Previous studies indicate that mammalian spermatozoa possess the enzymatic machinery to produce and degrade their own AEA via the actions of the AEA-synthesizing phospholipase D and the fatty acid amide hydrolase (FAAH) respectively. Our results indicated that, URB597, a potent inhibitor of the FAAH, produced effects on bovine sperm capacitation similar to those elicited by exogenous AEA suggesting that this process is normally regulated by an endogenous tone. We also investigated whether anandamide is involved in bovine heparin-capacitated spermatozoa, since heparin is a known capacitating agent of bovine sperm. When the spermatozoa were incubated in the presence of R(+)-methanandamide and heparin, the percentage of capacitated spermatozoa was similar to that in the presence of R(+)-methanandamide alone. The pre-incubation with CB1 or TRPV1 antagonists inhibited heparin-induced sperm capacitation; moreover the activity of FAAH was 30% lower in heparin-capacitated spermatozoa as compared to control conditions. This suggests that heparin may increase endogenous anandamide levels. Our findings indicate that anandamide induces sperm capacitation through the activation of CB1 and TRPV1 receptors and could be involved in the same molecular pathway as heparin in bovines

    The role of immune suppression in COVID-19 hospitalization: clinical and epidemiological trends over three years of SARS-CoV-2 epidemic

    Get PDF
    Specific immune suppression types have been associated with a greater risk of severe COVID-19 disease and death. We analyzed data from patients >17 years that were hospitalized for COVID-19 at the “Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico” in Milan (Lombardy, Northern Italy). The study included 1727 SARS-CoV-2-positive patients (1,131 males, median age of 65 years) hospitalized between February 2020 and November 2022. Of these, 321 (18.6%, CI: 16.8–20.4%) had at least one condition defining immune suppression. Immune suppressed subjects were more likely to have other co-morbidities (80.4% vs. 69.8%, p < 0.001) and be vaccinated (37% vs. 12.7%, p < 0.001). We evaluated the contribution of immune suppression to hospitalization during the various stages of the epidemic and investigated whether immune suppression contributed to severe outcomes and death, also considering the vaccination status of the patients. The proportion of immune suppressed patients among all hospitalizations (initially stable at <20%) started to increase around December 2021, and remained high (30–50%). This change coincided with an increase in the proportions of older patients and patients with co-morbidities and with a decrease in the proportion of patients with severe outcomes. Vaccinated patients showed a lower proportion of severe outcomes; among non-vaccinated patients, severe outcomes were more common in immune suppressed individuals. Immune suppression was a significant predictor of severe outcomes, after adjusting for age, sex, co-morbidities, period of hospitalization, and vaccination status (OR: 1.64; 95% CI: 1.23–2.19), while vaccination was a protective factor (OR: 0.31; 95% IC: 0.20–0.47). However, after November 2021, differences in disease outcomes between vaccinated and non-vaccinated groups (for both immune suppressed and immune competent subjects) disappeared. Since December 2021, the spread of the less virulent Omicron variant and an overall higher level of induced and/or natural immunity likely contributed to the observed shift in hospitalized patient characteristics. Nonetheless, vaccination against SARS-CoV-2, likely in combination with naturally acquired immunity, effectively reduced severe outcomes in both immune competent (73.9% vs. 48.2%, p < 0.001) and immune suppressed (66.4% vs. 35.2%, p < 0.001) patients, confirming previous observations about the value of the vaccine in preventing serious disease

    Neural glycoprotein M6a is released in extracellular vesicles and modulated by chronic stressors in blood

    Get PDF
    Abstract Membrane neuronal glycoprotein M6a is highly expressed in the brain and contributes to neural plasticity promoting neurite growth and spine and synapse formation. We have previously showed that chronic stressors alter hippocampal M6a mRNA levels in rodents and tree shrews. We now show that M6a glycoprotein can be detected in mouse blood. M6a is a transmembrane glycoprotein and, as such, unlikely to be free in blood. Here we demonstrate that, in blood, M6a is transported in extracellular vesicles (EVs). It is also shown that M6a-containing EVs are delivered from cultured primary neurons as well as from M6a-transfected COS-7 cells. Released EVs containing M6a can be incorporated into COS-7 cells changing its phenotype through formation of membrane protrusions. Thus, M6a-containing EVs might contribute to maintain cellular plasticity. M6a presence in blood was used to monitor stress effects. Chronic restraint stress modulated M6a protein level in a sex dependent manner. Analysis of individual animals indicated that M6a level variations depend on the stressor applied. The response to stressors in blood makes M6a amenable to further studies in the stress disorder field

    Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone.

    Get PDF
    Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders

    Effect of RU-486 on uterine nitric oxide levels.

    No full text
    <p>Mice were sacrificed on day 7 of gestation and uterine tissue was cultured for 24 h. Assays were performed using progesterone (50 ng/ml), LPS (1 µg/ml) and RU-486 (0.1 µM). Nitric oxide was measured as the accumulation of nitrate (NO<sub>3</sub><sup>−</sup>) and nitrite (NO<sub>2</sub><sup>−</sup>) in culture supernatants by Griess technique. n = 11. Values are means ± SEM. Results were expressed as µM NO<sub>2</sub><sup>−</sup>/mg tissue. Bars with different superscript letters denote significant differences (P<0.05). a≠b≠c.</p

    Effect of LPS treatment on serum progesterone levels.

    No full text
    <p>Mice were injected on day 7 of gestation and sacrificed at 6, 12 and 24 h after LPS (1 µg/g) or vehicle (PBS) administration. Progesterone was evaluated in serum samples by radioimmunoassay. Progesterone levels are expressed as ng/ml serum. n = 6–9. Values are means ± SEM. Bars with different superscript letters denote significant differences (P<0.05). a≠b≠c≠d.</p
    corecore