9,412 research outputs found

    Comment: Bibliometrics in the Context of the UK Research Assessment Exercise

    Full text link
    Research funding and reputation in the UK have, for over two decades, been increasingly dependent on a regular peer-review of all UK departments. This is to move to a system more based on bibliometrics. Assessment exercises of this kind influence the behavior of institutions, departments and individuals, and therefore bibliometrics will have effects beyond simple measurement. [arXiv:0910.3529]Comment: Published in at http://dx.doi.org/10.1214/09-STS285A the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Empirical Bayes selection of wavelet thresholds

    Full text link
    This paper explores a class of empirical Bayes methods for level-dependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixing weight, or sparsity parameter, for each level of the transform is chosen by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold. Details of the calculations needed for implementing the procedure are included. In practice, the estimates are quick to compute and there is software available. Simulations on the standard model functions show excellent performance, and applications to data drawn from various fields of application are used to explore the practical performance of the approach. By using a general result on the risk of the corresponding marginal maximum likelihood approach for a single sequence, overall bounds on the risk of the method are found subject to membership of the unknown function in one of a wide range of Besov classes, covering also the case of f of bounded variation. The rates obtained are optimal for any value of the parameter p in (0,\infty], simultaneously for a wide range of loss functions, each dominating the L_q norm of the \sigmath derivative, with \sigma\ge0 and 0<q\le2.Comment: Published at http://dx.doi.org/10.1214/009053605000000345 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    EbayesThresh: R Programs for Empirical Bayes Thresholding

    Get PDF
    Suppose that a sequence of unknown parameters is observed sub ject to independent Gaussian noise. The EbayesThresh package in the S language implements a class of Empirical Bayes thresholding methods that can take advantage of possible sparsity in the sequence, to improve the quality of estimation. The prior for each parameter in the sequence is a mixture of an atom of probability at zero and a heavy-tailed density. Within the package, this can be either a Laplace (double exponential) density or else a mixture of normal distributions with tail behavior similar to the Cauchy distribution. The mixing weight, or sparsity parameter, is chosen automatically by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold, and the package provides the posterior mean, and hard and soft thresholding, as additional options. This paper reviews the method, and gives details (far beyond those previously published) of the calculations needed for implementing the procedures. It explains and motivates both the general methodology, and the use of the EbayesThresh package, through simulated and real data examples. When estimating the wavelet transform of an unknown function, it is appropriate to apply the method level by level to the transform of the observed data. The package can carry out these calculations for wavelet transforms obtained using various packages in R and S-PLUS. Details, including a motivating example, are presented, and the application of the method to image estimation is also explored. The final topic considered is the estimation of a single sequence that may become progressively sparser along the sequence. An iterated least squares isotone regression method allows for the choice of a threshold that depends monotonically on the order in which the observations are made. An alternative possibility, also discussed in detail, is a particular parametric dependence of the sparsity parameter on the position in the sequence.

    Learning curves for Gaussian process regression: Approximations and bounds

    Full text link
    We consider the problem of calculating learning curves (i.e., average generalization performance) of Gaussian processes used for regression. On the basis of a simple expression for the generalization error, in terms of the eigenvalue decomposition of the covariance function, we derive a number of approximation schemes. We identify where these become exact, and compare with existing bounds on learning curves; the new approximations, which can be used for any input space dimension, generally get substantially closer to the truth. We also study possible improvements to our approximations. Finally, we use a simple exactly solvable learning scenario to show that there are limits of principle on the quality of approximations and bounds expressible solely in terms of the eigenvalue spectrum of the covariance function.Comment: 25 pages, 10 figure

    A generalized Fellner-Schall method for smoothing parameter estimation with application to Tweedie location, scale and shape models

    Get PDF
    We consider the estimation of smoothing parameters and variance components in models with a regular log likelihood subject to quadratic penalization of the model coefficients, via a generalization of the method of Fellner (1986) and Schall (1991). In particular: (i) we generalize the original method to the case of penalties that are linear in several smoothing parameters, thereby covering the important cases of tensor product and adaptive smoothers; (ii) we show why the method's steps increase the restricted marginal likelihood of the model, that it tends to converge faster than the EM algorithm, or obvious accelerations of this, and investigate its relation to Newton optimization; (iii) we generalize the method to any Fisher regular likelihood. The method represents a considerable simplification over existing methods of estimating smoothing parameters in the context of regular likelihoods, without sacrificing generality: for example, it is only necessary to compute with the same first and second derivatives of the log-likelihood required for coefficient estimation, and not with the third or fourth order derivatives required by alternative approaches. Examples are provided which would have been impossible or impractical with pre-existing Fellner-Schall methods, along with an example of a Tweedie location, scale and shape model which would be a challenge for alternative methods

    Julian Ernst Besag, 26 March 1945 -- 6 August 2010, a biographical memoir

    Full text link
    Julian Besag was an outstanding statistical scientist, distinguished for his pioneering work on the statistical theory and analysis of spatial processes, especially conditional lattice systems. His work has been seminal in statistical developments over the last several decades ranging from image analysis to Markov chain Monte Carlo methods. He clarified the role of auto-logistic and auto-normal models as instances of Markov random fields and paved the way for their use in diverse applications. Later work included investigations into the efficacy of nearest neighbour models to accommodate spatial dependence in the analysis of data from agricultural field trials, image restoration from noisy data, and texture generation using lattice models.Comment: 26 pages, 14 figures; minor revisions, omission of full bibliograph
    corecore