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Summary. We consider the optimization of smoothing parameters and variance components in models with a regular log
likelihood subject to quadratic penalization of the model coefficients, via a generalization of the method of Fellner (1986)
and Schall (1991). In particular: (i) we generalize the original method to the case of penalties that are linear in several
smoothing parameters, thereby covering the important cases of tensor product and adaptive smoothers; (ii) we show why
the method’s steps increase the restricted marginal likelihood of the model, that it tends to converge faster than the EM
algorithm, or obvious accelerations of this, and investigate its relation to Newton optimization; (iii) we generalize the method
to any Fisher regular likelihood. The method represents a considerable simplification over existing methods of estimating
smoothing parameters in the context of regular likelihoods, without sacrificing generality: for example, it is only necessary to
compute with the same first and second derivatives of the log-likelihood required for coefficient estimation, and not with the
third or fourth order derivatives required by alternative approaches. Examples are provided which would have been impossible
or impractical with pre-existing Fellner-Schall methods, along with an example of a Tweedie location, scale and shape model
which would be a challenge for alternative methods, and a sparse additive modeling example where the method facilitates
computational efficiency gains of several orders of magnitude.
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1. Introduction

This article is about a simple method for estimating the
smoothing parameters and certain other variance parameters
of models with a regular log likelihood, subject to quadratic
penalization. The method generalizes the algorithm of Fellner
(1986) and Schall (1991), by extending the range of smooth
model terms with which it can deal, and generalizing beyond
the GLM setting to models with any Fisher regular likelihood.
The advantage of the Fellner-Schall algorithm is that it offers
a simple explicit formula by which smoothing and variance
parameters can be iteratively updated to optimize the model
restricted likelihood, using essentially the same quantities
anyway required in order to estimate the model coefficients.
This has led to variants of it being use with smooth addi-
tive models, by Rigby and Stasinopoulos (2014) amongst
others. However, the original method lacks generality, apply-
ing only to smooth terms each having a single smoothing
parameter, so that tensor product smooth interactions and
adaptive smoothers can not be employed. Rodŕıguez-Álvarez
et al. (2015) partially remove this restriction for some tensor
product smooths, but what we propose here is both sim-
pler and more general. Furthermore, the original method only
applies to GLM type likelihoods, with application beyond that
setting relying on treating linearized approximations as Gaus-
sian. Again what we propose is simpler and more general.
Finally the original method derivations, while plausible, do
not prove that the algorithm steps each increase the restricted

likelihood, nor offer any insight into convergence rates. We
address these issues, thereby largely removing the objection
that Fellner-Schall smoothing parameter updates were some-
what ad hoc and insufficiently general.

In part, we are motivated by problems in fisheries stock
assessment. For example, Figure 1a shows data from a 2010
survey for mackerel eggs off the coast of western Europe. Such
surveys are undertaken in order to help estimate the mass of
spawning adults that must be present, and generalized addi-
tive models provide suitable spatial models for the mean egg
density. As with most fisheries data, the egg counts tend to
be highly over-dispersed relative to a Poisson distribution,
and a Tweedie (1984) distribution based model can offer a
much better fit: the variance of a Tweedie random variable yi,
with mean μi, is given by var(yi) = φμ

p

i where φ and p (here
1 < p < 2) are parameters. An important biological feature is
that mackerel are known to favor spawning grounds close to
the continental shelf edge, for which the 200 m depth contour
offers a reasonable proxy. However, if mackerel are respond-
ing to sea depth, there is no good reason to suppose that this
response leads only to a change in the mean density of eggs in
the water column: other aspects of the distribution shape are
also likely to be affected, and a reasonable model would allow
the parameters p and φ to vary smoothly as sea depth varies.

In principle such a model lies in the GAMLSS class of
Rigby and Stasinopoulos (2005) and could be estimated using
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Figure 1. a. Mackerel (Scomber scombrus) egg data from the 2010 survey. Gray circles are survey locations, black circles
are proportional to the 4th root of egg count. b. Image and contour plot of the spatial effect from the Tweedie location scale
and shape model described in Section 6.

Wood et al. (2016). However, there is no publicly available
software for estimating a Tweedie location scale and shape
model. The problem is that the normalizing constant of the
Tweedie density is a function of p and μ and is computable
only by summing an infinite series “from the middle” (Dunn
and Smyth, 2005). Wood et al. (2016) show how to obtain
first and second derivatives of the log density with respect to
p and μ, in a numerically stable way, but for covariate depen-
dent p and φ the Wood et al. (2016) method would require
the corresponding third and fourth derivatives as well. Hence,
it would be useful to have a smoothing parameter estimation
method that is general enough to encompass a Tweedie loca-
tion scale and shape model, while avoiding the need for higher
derivatives of the log density.

To introduce the smoothing parameter estimation problem
in more detail, first consider the simple case of a Gaussian
additive model for a univariate response variable

yi = Aiθ +
∑

j

gj(xji) + εi (1)

where Ai is the ith row of a parametric model matrix, θ is a
vector of unknown coefficients, gj is a smooth function of (pos-
sibly multivariate) covariate xj, and the εi are independent
N(0, σ2) random deviates. The gj can be represented using
reduced rank spline bases, with associated quadratic penal-
ties penalizing departure from smoothness during fitting. For
example, gj(x) = ∑

k
bjk(x)γjk, where the bjk are spline basis

functions and the γjk are coefficients: the associated smooth-
ing penalty is then λjγ

T
j Sjγj, where Sj is a fixed matrix, and

is usually rank deficient because some functions are treated

as “completely smooth.” λj is a smoothing parameter, con-
trolling the strength of penalization during fitting. In general,
each gj may have several penalties. We denote single elements
of a vector/matrix, x/X, by xi/Xij (not xi/Xij).

It is well established (e.g., Kimeldorf and Wahba, 1970;
Silverman, 1985; Ruppert et al., 2003) that smoothing penal-
ties can be viewed as resulting from improper Gaussian prior
distributions on the spline coefficients, in which case (1) can
be re-written as a linear mixed effects model:

y = Xβ + ε, β ∼ N(0,S−
λ σ2) and ε ∼ N(0, Iσ2), (2)

where σ2 and λ are parameters, β is a coefficient vector con-
taining θ and the coefficients for each smooth term, and X is
an n × p model matrix, containing A and the evaluated basis
functions of the smooth terms. Sλ is a positive semi-definite
precision matrix, with Moore-Penrose pseudoinverse S−

λ . Let
Sj be Sj padded out with zeroes, so that βTSjβ = γT

j Sjγj,
where γj is the coefficient vector for gj. Then Sλ = ∑

j
λjSj

(some gj may each be penalized by several terms in this sum-
mation, so that some summation terms, λjSj, are themselves
replaced by summations

∑
k
λjkSjk). The null space of Sλ is

interpretable as the space of model fixed effects, whereas the
range space is the space of random effects. Obviously, other
simple Gaussian random effect terms can be included in the
model in addition to smooth functions.

Fellner (1986) developed a simple iteration for updating λ

in order to maximize the restricted marginal likelihood of (2),
for the special case in which Sλ = ∑

j
λjIj, the Ij being iden-

tity matrices with most of their diagonal entries zeroed, and
no non-zero entries in common between different Ij. Schall
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(1991) extended this to generalized linear mixed models.
Here, we first give a simple generalization of the Fellner-
Schall method that applies to any model with the structure
(2), including smooth additive models in which the smoother
terms each have multiple smoothing parameters. We also show
why the method improves the restricted marginal likelihood
at each step, which is something not revealed by the con-
ventional derivations of the original method. In the additive
Gaussian setting our main result is the update formula

λ∗
j = σ̂2 tr(S−

λ Sj) − tr{(XTX + Sλ)
−1Sj}

β̂
T
Sjβ̂

λj,

where

σ̂2 = ‖y − Xβ̂‖2

n − tr{(XTX + Sλ)−1XTX} .

We also consider updates in the case of any model giving
rise to a regular likelihood, but with the previously described
prior distribution structure on β, resulting in the general
update (8) in Section 4: generalized linear mixed models are
a special case. The update formula is iteratively alternated
with evaluation of β̂ given the current λ estimates.

The rest of the article is structured as follows. We first
consider the case of Gaussian additive models, deriving a
Fellner-Schall type update that can deal with terms with
multiple smoothing parameters using a derivation that shows,
by construction, that the update must increase the model
restricted marginal likelihood. We then study the method
in the context of updating one smoothing parameter from
a model with several smoothing parameters, showing that it
takes longer steps than the EM algorithm, or the most obvious
acceleration of the EM algorithm, while not overshooting the
maximum of the restricted marginal likelihood, at least in the
large sample limit. The update is then generalized to the case
of any Fisher-regular likelihood, at the cost of a large sample
approximation borrowed from the PQL method. Finally, we
present simple examples which were not possible with previ-
ous Fellner-Schall methods, before returning to the Tweedie
location scale and shape model for the Mackerel data.

2. The Gaussian Case Update

This section derives the update in a manner that gives a con-
veniently general form, and readily generalizes further. The
next section provides theoretical insight into why it is effec-
tive. For model (2), the improper log joint density of the data,
y, and coefficients, β, can be written as,

log fλ(y, β) = −‖y − Xβ‖2 + βTSλβ

2σ2
+ log |Sλ/σ

2|+/2 + c,

where |Sλ|+ denotes the product of the non-zero eigenval-
ues of Sλ and we use c to denote a parameter independent
constant, which may vary from expression to expression. Fol-
lowing Wood (2011), the log restricted marginal likelihood

can conveniently be written as,

lr(λ) = −‖y − Xβ̂λ‖2 + β̂
T

λ Sλβ̂λ

2σ2
+ log |Sλ/σ

2|+/2

− log |XTX/σ2 + Sλ/σ
2|/2 + c,

where β̂λ = argmaxfλ(y, β) for a given λ. Expressing the
joint density and lr in this way is the key to straight-
forwardly obtaining a general update formula. Given that
∂(‖y − Xβ‖2 + βTSλβ)/∂β|β̂λ

= 0, by definition of β̂λ, we have

∂lr

∂λj

= tr(S−
λ Sj)/2 − tr{(XTX + Sλ)

−1Sj}/2 − β̂
T

λ Sjβ̂λ/(2σ2).

So ∂lr/∂λj will be negative if tr(S−
λ Sj) − tr{(XTX +

Sλ)
−1Sj} < β̂

T

λ Sjβ̂λ/σ
2, indicating that λj should be

decreased. If the inequality is reversed then ∂lr/∂λj is
positive, indicating that λj should be increased. If the
inequality becomes an equality then ∂lr/∂λj = 0 and λj

should not be changed. A final requirement of any update
is that λj should remain positive, but by Theorem 1 or
Remark 1, below, tr(S−

λ Sj) − tr{(XTX + Sλ)
−1Sj} ≥ 0, while

β̂
T

λ Sjβ̂λ ≥ 0 by the positive semi-definiteness of Sj. Hence a
simple update that meets all four requirements is

λ∗
j = σ2 tr(S−

λ Sj) − tr{(XTX + Sλ)
−1Sj}

β̂
T

λ Sjβ̂λ

λj, (3)

with λ∗
j set to some pre-defined upper limit if β̂

T

λ Sjβ̂λ is so close
to zero that the limit would otherwise be exceeded. Formally
� = λ∗ − λ is an ascent direction for lr, by Taylor’s theorem
and the fact that 	T∂lr/∂λ > 0, unless λ is already a turning
point of lr. To formally guarantee that the update increases lr
requires step-length control, for example, we use the update
δ = �/2k, where k is the smallest integer ≥ 0 such that
lr(λ + δ) > lr(λ).

Two terms in the update have the potential to be of O(p3)
floating point cost, but tr{(XTX + Sλ)

−1Sj} can re-use the
Cholesky factor of XTX + Sλ, which is anyway required to
estimate β̂λ, while the block diagonal nature of Sλ means
that in reality tr(S−

λ Sj) has O(q3
j ) computational cost, where

qj (� p, typically) is the number of coefficients affected
by Sj. Under the conditions of the original Fellner–Schall
proposal, tr(S−

λ Sj) = rank(Sj)/λ and we recover exactly the
Fellner–Schall update, albeit with a slightly more compu-
tationally tractable expression. The update relies on the
following (stated for a slightly more general Sλ than we use),
which is the key to the generalization beyond singly penalized
smooth terms.

Theorem 1. Let B be a positive definite matrix and Sλ

be a positive semi-definite matrix of the same dimension,
parameterized by λ, and with a null space that is indepen-
dent of the value of λ. Let positive semi-definite matrix
Sj denote the derivative of Sλ with respect to λj. Then
tr(S−

λ Sj) − tr{(B + Sλ)
−1Sj} > 0.
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Figure 2. Alternate steps of update (3) for a rank 20 cubic spline smoother of Gaussian data. Each panel shows the log
restricted likelihood as a continuous curve, while the EM Q-function is plotted as a dashed curve, shifted to match the log
restricted likelihood at each step’s start. The two thin ticks on the x axis show the start of the step and the maximum of the
Q function. The thick black tick is update (3).

Proof. Let B = U	UT be the eigen-decomposition of
B. If S′

λ = 	−1/2UTSλU	−1/2 while S′
j = 	−1/2UTSjU	−1/2

then it follows that tr{(B + Sλ)
−1Sj} = tr{(I + S′

λ)
−1S′

j},
while tr(S−

λ Sj) = tr(S′−
λ S′

j), where S′−
λ = 	1/2UTS−

λ U	1/2.

Now form the second eigen-decomposition S′
λ = VDVT.

We have that tr{(I + S′
λ)

−1S′
j} = tr{(I + D)−1VTS′

jV}, while

tr(S′−
λ S′

j) = tr(D−VTS′
jV). Let si denote the ith diagonal

element of VTS′
jV. By the conditions of the theorem the

null space of Sλ is independent of λ, and hence si = 0 if
Dii = 0. So if M = {i : si �= 0}, tr(S−

λ Sj) = ∑
i∈M

si/Dii while
tr{(B + Sλ)

−1Sj} = ∑
i∈M

si/(Dii + 1). Since all the Dii in the
summations are positive, by the positive semi-definiteness of
Sλ and the definition of M, then the terms in the second sum-
mation are each smaller than the corresponding term in the
first, and the result is proved.

Remark 1. A similar result also follows if B is positive semi-
definite, but B + Sλ is positive definite. Define Bδ = B + δI
for δ ≥ 0 and 	(δ) = tr(S−

λ Sj) − tr{(Bδ + Sλ)
−1Sj}. 	(δ) is

continuous with continuous finitely bounded derivative w.r.t.
δ for any δ ≥ 0 and by Theorem 1 	(δ) > 0 for any δ > 0,
hence 	(0) ≥ 0. This is relevant for random effects models for
which X may be rank deficient, while XTX + Sλ is not.

The variance parameter, σ2, can be estimated directly for
any λ by setting the derivative of lr with respect to σ2 to
zero and solving to obtain σ̂2 = ‖y − Xβ̂λ‖2/[n − tr{(XTX +
Sλ)

−1XTX}], which is then substituted for σ2 in (3).

3. Comparison with the EM Algorithm and
Newton Optimization

The update (3) can be viewed as a crude approximation to
an EM update (Dempster et al., 1977). Specifically, the EM
Q-function for model (2) has the form

Qλ′(λ) = −‖y − Xβ̂λ′ ‖2 + β̂
T

λ′Sλβ̂λ′

2σ2
+ log |Sλ/σ

2|+/2

− tr{(XTX + Sλ′)−1Sλ}/2, (4)

and (3) would be the exact maximizer of Q, if tr(S−
λ Sj) −

tr{(XTX + Sλ′)−1Sj} ∝ 1/λj.

In fact, update (3) systematically makes larger changes to λ

than the EM update, as illustrated in Figure 2. For insight into
why this happens, consider updating a single λj relating to a
block λjSj of Sλ, so that tr(S−

λ Sj) = k/λj, where k = rank(Sj).

Then defining γ = tr{(XTX + Sλ′)−1Sj} and b = β̂
T

λ′Sjβ̂λ′/σ2,
(3) seeks λj to solve

k/λj = b + γλ′
j/λj, (5)

whereas an EM step seeks λj to solve

k/λj = b + γ. (6)

If k/λj > b + γ then λj has to be increased from λ′
j under

either update. It has to be increased by more under (3),
because γλ′

j/λj decreases monotonically from γ as λj increases
from λ′

j. A similar argument shows that, if k/λj < b + γ, then
the required reduction in λj is larger under (3) than under
EM. Figure 3 shows the EM update root finding problem as
a dashed curve, and the update (3) root finding problem as a
solid curve, for the same set up illustrated in Figure 2.

Figure 3 also illustrates the equivalent problem for the
restricted marginal likelihood itself, which can be viewed as
solving the same problem as the EM update, but with both b

and γ being functions of λ: the dependence of b on λ is indi-
rect via β̂λ, but the dependence of γ is direct. This suggests
using an accelerated EM update seeking to solve

k/λj = b + γ(λj), (7)

where γ(λj) = tr{(XTX + Sλ)
−1Sj}. This takes longer steps

than the original EM update because, like γλ′
j/λj, γ(λj)

decreases monotonically from γ as λj increases form λ′
j (see

the dashed curve in Figure 3). Update (3) also results in
longer update steps than this accelerated EM step, as Figure
3 suggests and the theorem following demonstrates.

Theorem 2. Consider updating a single λj corresponding
to a diagonal block λjSj of Sλ. Update (3) takes a longer step
than the equivalent accelerated EM update.
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Figure 3. Illustration of the root finding problem corresponding to the various updates discussed in Section 3, for the same
modeling problem underlying Figure 2. The gray horizontal line is the constant b. The right plot corresponds to log λ′

j = −5
and the right to log λ′

j = 0. The EM update corresponds to the point at which the dashed curve crosses the b line: root finding
problem (6). The accelerated EM update corresponds to where the dotted curve crosses the b line: root finding problem (7).
Update (3) corresponds to where the solid curve crosses the b line: root finding problem (5). The REML optimum is where
the dot-dashed curve crosses the b line.

Proof. Under the stated conditions tr(S−
λ Sj) = k/λj where

k = rank(Sj). Let γ(λj) = tr{(XTX + Sλ)
−1Sj} and α(λj) =

k/λj − γ(λj). The accelerated EM step seeks λj such that

α(λj) = b where b = β̂
T

λ′Sjβ̂λ′/σ2, increasing λj if α(λj) > b and
decreasing λj if α(λj) < b. Update (3) is exactly equivalent to
seeking λj such that α′(λj) = b, where α′(λj) = k/λj − γ ′(λj)
and γ ′(λj) = γ(λ′

j)λ
′
j/λj. By definition α′(λ′

j) = α(λ′
j), so to

prove the result it suffices to prove that α′(λj) > α(λj) when
λj > λ′

j and α′(λj) < α(λj) when λj < λ′
j. Canceling k/λj terms

this is equivalent to proving γ ′(λj) < γ(λj) when λj > λ′
j and

γ ′(λj) > γ(λj) when λj < λ′
j. Now let S−j = ∑

i�=j
λiSi, and let

B be any matrix such that BTB = S−j. Consider the QR
decomposition (XT,BT)T = QR and form the symmetric pos-
itive semi-definite eigen-decomposition U	UT = R-TSjR

−1.

Routine manipulation shows that γ(λj) = ∑k

i=1
�ii/(1 +

λj�ii). It follows that γ ′(λj) = ∑k

i=1
�ii/(λj/λ

′
j + λj�ii). Hence

γ ′(λj) < γ(λj) if λj > λ′
j and γ ′(λj) > γ(λj) if λj < λ′

j, proving
the result.

Taking longer steps than a plain or accelerated EM algo-
rithm would be of limited utility if those steps overshot the
maximum of the restricted likelihood and require repeated
step-length control, especially when close to the optimum. In
practice such overshoot does not occur. The following theorem
offers some insight into the reasons. It requires two technical
assumptions.
Assumption 1: If Q1 is the first n rows of Q from the proof of
Theorem 2 and a = UTQT

1y, then a2
i = Op(n

βi) where βi > 0
for all i, and βi is the minimum β′ such that a2

i = Op(n
β′
).

The assumption is less obscure than it at first appears.
Let μ̂0 = Xβ̂, when λj = 0, so that μ̂0 = X(XTX + Sj)

−1

Xy = Q1UUTQT
1y. Now let C = Q1U, so that

μ̂0 = CCTy = ∑
i
μ̂i, where μ̂i = C·iCT

·iy. The assump-
tion that yTμ̂i = Op(n), and that 1 is the lowest power of
n for which this holds, is essentially equivalent to assuming
that no model component is orthogonal to E(y), but since

ai = CT
·iy it is also equivalent to Assumption 1 with βi = 1.

Assumption 2: In the notation of the proof of Theorem 2,
λ�ii = Op(n

αi), where αi is an unknown real constant and is

the minimum α′
i such that λ�ii = Op(n

α′
i).

This simply assumes that each λ�ii has some polynomial
dependence on n, but not that we know what it is.

Theorem 3. Let the setup be as Theorem 2 and λ̂j denote
the maximizer of the restricted likelihood with respect to λj.
Given assumptions 1 and 2, for an initial λj sufficiently close
to λ̂j, then as n → ∞ the update, λ∗

j , given by (3) is either

between λj and λ̂j, or tends to λ̂j.

Proof. Dropping the subscript j, let ρ = log λ, and let
λ denote the jth smoothing parameter at the start of the
updates. Consider again the root finding problems equiva-
lent to the update (3) and to maximization of the restricted
marginal likelihood. Applying Taylor’s theorem to the com-
ponents of these root finding problems, we have that, for λ

sufficiently close to λ̂,

k

λ
− k

λ
(ρ̂ − ρ) − γ(λ) −

(
dγ

dρ
+ db

dρ

)
(ρ̂ − ρ) = b(λ),

where the derivatives are evaluated at the initial value, ρ, and

k

λ
− k

λ
(ρ∗ − ρ) − γ(λ) + γ(λ)(ρ∗ − ρ) = b(λ).

So, if γ(λ) ≤ δ(λ) = −(dγ/dρ + db/dρ), then λ < λ∗ ≤ λ̂. Also,
if λγ(λ) → 0 and λδ(λ) → 0, as n → ∞, then |ρ∗ − ρ̂| → 0.

Now consider the actual behavior of γ(λ) and δ(λ). Using
the QR and eigen-decomposition steps from the proof of
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Theorem 2, some routine manipulation yields

γ(λ) = 1

λ

∑
i

λ�ii

1 + λ�ii

and

δ(λ) = 1

λ

∑
i

λ�ii

1 + λ�ii

{
(1 + 2a2

i )λ�ii + λ2�2
ii

1 + 2λ�ii + λ2�2
ii

}
.

So the ith term of δ will be larger that the ith term of
γ if λ�ii > (2a2

i − 1)−1: if λ�ii = Op(n
αi) in accordance with

Assumption 2, then this dominance occurs in the n → ∞ limit
when αi > −βi. Furthermore, if αi < −βi/2, then the ith terms
of γ(λ)λ and δ(λ)λ both tend to zero in the large sample limit.
So in the large sample limit, sufficiently close to λ̂, there are
only two non-exclusive possibilities: γ(λ) < δ(λ) so that λ∗

lies between λ and λ̂, and/or all the terms in the δ(λ) and
γ(λ) summations tend to zero, so that λδ(λ), λγ(λ) → 0 and
|λ∗ − λ̂| → 0.

The solution of the linearized root-finding problem cor-
responding to the restricted likelihood maximization is the
Newton method update. Since the theorem indicates that the
updates take steps no longer than Newton’s method, then a
corollary of Theorem 3 is that iteration of update (3) will con-
verge no faster than Newton’s method, asymptotically, and
may converge more slowly. Obviously, this slower convergence
in terms of number of step required is offset by the fact that
less computation is required per steps.

4. Beyond the Linear Gaussian Case and
Alternatives to REML

Now consider replacing the Gaussian log likelihood with
another log likelihood, l, meeting the Fisher regularity condi-
tions, so that the improper log joint density becomes

log fλ(y, β) = l(β) − βTSλβ/2 + log |Sλ|+ + c,

and in the large sample limit β|y ∼ N(β̂λ,Vλ) where
V−1

λ = Hλ or EHλ and Hλ = −∂2l/∂β∂βT + Sλ. Newton’s
method can be used to find β̂λ, with the usual modifications
to guarantee convergence (e.g., Wood, 2015, Section 5.1.1).
Following Wood et al. (2016), the log Laplace approximate
marginal likelihood in this case is conveniently expressed as

lr = l(β̂λ) − β̂
T

λ Sλβ̂λ/2 + log |Sλ|+/2 − log |Hλ|/2 + c.

Defining H = −∂2l/∂β∂βT, we have

∂lr

∂λj

= −β̂
T

λ Sjβ̂λ/2 + tr(S−
λ Sj)/2 − tr{VλSj}/2

− tr{Vλ∂H/∂λj}/2.

The direct dependence of H on λj is inconvenient. However,
the PQL and performance oriented iteration methods for λ

estimation of Breslow and Clayton (1993) and Gu (1992) both
neglect the dependence of H on λ, on the basis that it anyway

tends to zero in the large sample limit. If we follow these
precedents, then the development follows the Gaussian case
and the update is

λ∗
j = tr(S−

λ Sj) − tr{Vλ′Sj}
β̂

T

λ Sjβ̂λ

λj. (8)

If ∂2l/∂β∂βT is independent of λ at finite sample size, as is
the case for some distribution – link function combinations in
a generalized linear model setting, then the update is guar-
anteed to increase lr under step size control, but otherwise
this is not the case, and in practice the λ estimate no longer
exactly maximizes lr.

Theorem 1, required to guarantee that λ∗
j > 0, will hold

if Vλ is based on the expected Hessian of the negative log
likelihood, but if it is based on the observed Hessian, then this
must be positive definite for the theorem to hold. Hence, if the
observed Hessian is not positive definite, then the expected
Hessian, or a suitable nearest positive definite matrix to the
observed Hessian, should be substituted.

As in the Gaussian case, a link to the EM update can again
be established via an approximate Q function, obtained by
taking a second order Taylor expansion of l around β̂λ, and
using the large sample distribution of β|y:

Q∗
λ′(λ) = l(β̂λ′) − β̂

T

λ′Sλβ̂λ′/2 + log |Sλ|+/2

− tr(Vλ′Sλ)/2 − tr(Vλ′∂2l/∂β∂βT)/2.

The final term is then neglected, again following the PQL
type assumption.

In the case of a penalized generalized linear model, the
general update (8) becomes

λ∗
j = φ

tr(S−
λ Sj) − tr{(XTWX + Sλ)

−1Sj}
β̂

T

λ Sjβ̂λ

λj,

where W is the diagonal matrix of weights at convergence of
the usual penalized iteratively re-weighted least squares iter-
ation used to find β̂λ, and φ is the scale parameter, which can
be substituted by an estimate using the obvious equivalent of
σ̂2. Under the original Fellner–Schall restrictions, this update
corresponds to the Schall update for generalized linear mixed
models.

Given the Bayesian motivation for the smoothing penalty
inducing Gaussian priors that leads to the restricted marginal
likelihood criterion, the preceding method can be viewed as
an empirical Bayes procedure. However, similarly convenient
updates are readily computed for directly frequentist criteria.
For example, the AIC criteria, −2l + 2τ where τ = tr(VλEH)
(and Vλ is based on the expected Hessian), leads to the update

λ∗
j = ∂τ

∂λj

(
∂l

∂β

dβ̂

dλj

)−1

λj,

where ∂τ/∂λj = −tr(VλSjVλEH) and dβ̂/dλj = −(H +
Sλ)

−1Sjβ̂. For models in which a deviance, D, can be sensibly
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defined, such as GLMs, then an alternative is the GCV
criterion nD/(n − τ)2, which yields the update,

λ∗
j = −2D

n − τ

∂τ

∂λj

(
∂D

∂β

dβ̂

dλj

)−1

λj.

5. Simple Examples

First, consider a simple Gaussian model of the motorcy-
cle data from Silverman (1985), available in the MASS
package (Venables and Ripley, 2002) in R (R Core Team,
2014). The data are accelerations of the head of a crash
test dummy against time. An adaptive smooth, as described
in Wood (2011), is appropriate for smoothing the accel-
eration data against time, with the degree of smoothness
of a P-spline (Eilers and Marx, 1996) varying smoothly
with time. The smooth used has five smoothing parame-
ters with the penalties acting on overlapping subsets of the
40 model coefficients, thereby violating the structural con-
ditions on Sλ required by previously published Fellner-Shall
iterations.The smooth was estimated using the method pre-
sented here and by the quasi-Newton variant of the method of
Wood (2011) (so both methods have the same leading order
computational cost per iteration). Starting from all smooth-
ing parameters set to 1, and without step length control,
the new method converged in 39 steps, as against 32 for
the quasi-Newton method. The fits are identical to graphical

accuracy with equal effective degrees of freedom of 12.22. See
Figure 4.

The second example is a Cox proportional hazards model
for time to recurrence of colon cancer for n = 929 patients in
a chemotherapy trial (Moertel et al., 1995), available in the
survival package (Therneau, 2015) in R. In this case previ-
ously published Fellner–Schall methods would only be usable
by fitting an equivalent Poisson model to artificial data at
an O(n) multiplication of the computational cost, which is
impractically uncompetitive with existing methods. This cost
inflation is avoided by using update (8). The linear predictor
for the Cox regression had parametric effects for whether the
colon was perforated or not, obstructed or not, and whether
the tumor had adhered to neighboring organs. In addition,
a 3 level factor indicated the control group, treatment with
one drug of interest or treatment with a drug combination.
Smooth effects of age were included separately for males and
females along with a smooth effect for number of affected
lymph nodes. For this example, the new iteration, without
step length control, converged in 15 steps, compared to 16
steps for direct quasi-Newton optimization using the meth-
ods of Wood et al. (2016). The parametric model coefficients
differ only in the 4th significant digit, while differences in the
estimated smooth effects are also small, as shown in Figure 4.

Finally, consider a model fitting problem that is completely
infeasible using pre-existing methods, but is of a type that
is increasingly common in many areas of high throughput
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Figure 4. Top left: an adaptive smoother fitted to the motorcycle data using the proposed method. A fit by direct restricted
marginal likelihood maximization is indistinguishable. Previous Fellner–Schall methods could not be used for this example, as it
lacks the required special structure of Sλ. Other panels: estimated smooth effects for the colon cancer survival model. The esti-
mates using full Laplace approximate restricted marginal partial likelihood are shown in gray, with the new method estimates
overlaid in black. The intervals shown in all panels are 95% Bayesian intervals as discussed in Wood (2006), for example.
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science:

yi = α + f1(x1i) + f2(x2i) + fa(i)(z1i) + fb(i)(z2i) + fs(i)(z3i) + εi,

where the f· are smooth functions, xj and zj are covariates,
and s(i) indicates the subject to which the ith observa-
tion belongs. Each subject is associated with one level of
each of two crossed factors a and b: a(i) and b(i) indi-
cate the levels of a and b for observation i. There are
10000 subjects each with 110 observations, a and b have
50 and 40 levels, and the smooth functions are each repre-
sented with rank 10 spline bases. So the model has 10,092
smooth functions and 100,921 coefficients for 1,100,000 obser-
vations. Five smoothing parameters were used, one each for
f1 and f2, one for the 50 fa smooths and so on. Estima-
tion of the model coefficients is feasible because the model
matrix and penalties are highly sparse. Specifically, con-
sider the sparse Cholesky decomposition LTL = P(XTX +
Sλ)P

T, where P represents a sparsity preserving pivoting
operation (Davis, 2006). Then β̂ = PTL−1L-TPXTy, com-
putation of which takes seconds on a mid range laptop
(the equivalent computation with dense matrices would
take days, even assuming the required terabytes of mem-
ory were available). Even with a sparse X, the complexity
of the terms involved in conventional Newton based smooth-
ing parameter estimation methods causes unavoidable loss
of sparsity (infill) rendering the methods computationally

infeasible. In contrast, our Fellner Schall update can be
computed without infill. The only potentially difficult term,
tr{(XTX + Sλ)

−1Sj}, is actually the sum of squares of the
elements of the matrix B, where B = L-TPDj, and Dj

is any sparse matrix such that DjD
T
j = Sj. Dj can read-

ily be created alongside Sj. Furthermore, tr{(XTX + Sλ)
−1

XTX} = p − ∑
j
λjtr{(XTX + Sλ)

−1Sj} gives the model effec-

tive degrees of freedom, required for estimating σ2.
Figure 5 shows the model estimates when using (3) to iter-

atively estimate smoothing parameters. Estimation using the
Matrix library in R took less than 10 minutes with a single
CPU core of a mid range laptop. A rough estimate is that
a high end workstation using 10 CPU cores would take over
2 months to fit the same model using alternative methods.

6. A Tweedie Location, Scale and Shape Model
for Mackerel

We now return to the introduction’s motivating example of
modeling mackerel (Scomber scombrus) egg densities. The
data consist of counts of eggs in samples taken from the water
column at the sampling stations shown in Figure 1. Available
covariates are temperature and salinity at 20 m depth, water
volume sampled (an offset), spatial location as longitude and
latitude (converted to km east and km north), the identity of
the ship collecting the data, and the sea bed depth.
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Figure 5. Results of the very large sparse model fit discussed in Section 5. The model has 10092 smooths, with 100921
coefficients, 5 smoothing parameters, and is estimated from 1.1 million (simulated) observations, using less than 10 CPU
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A common theme with data of this type is that the counts
are highly over-dispersed relative to a Poisson distribution,
but with a mean variance relationship that is less extreme
than that suggested by a negative binomial distribution (see
e.g., Wood, 2006, Section 5.4.1). A Tweedie (1984) distri-
bution is often a better model, but it would be useful to
allow its shape and scale parameters to vary with covari-
ates. Specifically, the Tweedie distribution assumes that the
variance of random variable yi is related to its mean, μi via
var(yi) = φiμ

pi

i , where φi and pi are parameters usually tak-
ing one fixed value for all i. For the mackerel data it would be
useful to allow pi and φi to be smooth functions of covariates,
particularly sea bed depth, for example, using the model

log(μi) = g1(loi, lai) + g2(T20i) + g3(S20i)

+g4(b.depth
1/2) + bs(i) + log(voli),

h(pi) = g5(b.depth
1/2), log(φi) = g6(b.depth

1/2),

counti ∼ Tweedie(μi, pi, φi). (9)

The gk are smooth functions, h is a known link function
designed to keep 1 < p < 2, s(i) indicates which ship collected

sample i and bs(i) are independent N(0, σ2
b ) random effects.

We represented the spatial effect using a rank 150 Duchon
spline with first order derivative penalization (see Duchon,
1977; Miller and Wood, 2014), and other terms with rank
10 cubic penalized regression splines. The model can be
estimated, given smoothing parameters, using the Newton
iteration detailed in Wood et al. (2016) and available in R
package mgcv. The estimation of smoothing parameters using
Wood et al. (2016) would require the currently unavailable
third and fourth derivatives of the Tweedie density. We
therefore estimated the smoothing parameters using the
iterative update (8).

Estimation converged in 13 iterations taking 17 seconds
(single core of a mid range laptop computer). In compar-
ison, it took 11 seconds to fit a necessarily over-simplified
version of the model, with fixed p and φ, using the method of
Wood et al. (2016) in R package mgcv. The AIC for model (9)
was 180 lower than for the fixed p and φ version, although
residual plots (not shown) are reasonable for both models.
The estimated spatial smoother is shown in Figure 1b, while
the remaining effects are plotted in Figure 6. Notice how the
smooth effects of sea depth all have a pronounced peak at
around

√
200, corresponding to the edge of the continental
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Figure 6. Estimated smooth effects for the Tweedie location scale and shape model of the Mackerel egg survey data discussed
in Section 6. Panel c shows a QQ-plot for the predicted ship level random effects. Panels d, e and f are the smooth effects of
sea depth for μ, p and φ respectively. Notice how they all have a peak close to
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shelf. Both egg density and its variability appear to be peaking
near the shelf edge.

7. Discussion

Prior to the work reported here, the Fellner–Schall method
could only be applied to a subset of the smooth additive
models that could be estimated by direct Laplace approxi-
mate marginal likelihood maximization. The generalizations
introduced here remove this obstacle, and we have also
strengthened the theoretical underpinnings of the method.
The major advantage of the method is its simplicity: the direct
method of Wood et al. (2016) requires evaluation of third or
fourth order derivatives of the log likelihood, which are not
required by the generalized Fellner–Schall method. In addi-
tion, direct optimization of the Laplace approximate marginal
likelihood requires nested optimization and implicit differen-
tiation to obtain derivatives of β with respect to λ. Such an
approach involves considerable effort if it is to be numeri-
cally stable, which is not required by the modified Fellner
Schall iteration. The main theoretical cost is that, beyond the
Gaussian case, we are forced to make the same simplification
that underpins the PQL and performance oriented iteration
methods, and neglect the dependence of the Hessian of the
log likelihood on the smoothing parameters.

As demonstrated in Sections 5 and 6, our generalized
Fellner–Schall method can be applied to cases in which
alternative estimation methods would be very difficult to
implement, but it also offers advantages in settings which
are in principle less numerically taxing. The method can be
applied to non-standard smooth models, provided that we can
obtain the first and second derivatives of the log-likelihood,
which are anyway required for Newton optimization of model
coefficients. This greatly simplifies the process of implement-
ing non-standard models for particular applied problems,
freeing the modeler from the more onerous aspects of imple-
mentation, to concentrate on development of the model itself.
To gain insight into the effort saved, the reader might care to
compare the expressions for the fourth order and second order
derivatives of the generalized extreme value distribution, for
example.

Finally, an interesting question raised by the work here,
is whether it is possible to reduce the implementation
cost even further, by replacing the Hessian of the log-
likelihood in the update by a Quasi-Newton approximation,
thereby allowing coefficients to be estimated by Quasi-
Newton methods, and only requiring first derivatives of the
log-likelihood.

8. Supplementary material

The Mackerel data and method are available in R packages
gamair and mgcv, available on CRAN: see gam’s optimizer

argument. A simulation study method comparison is available
with this article at the Biometrics website on Wiley Online
Library.
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Wood, S. N., Pya, N. and Säfken, B. (2016). Smoothing parameter
and model selection for general smooth models with discus-
sion. Journal of the American Statistical Association 111,
1548–1575.

Received June 2016. Revised January 2017.
Accepted January 2017.


