4,344 research outputs found

    The planar-to-tubular structural transition in boron clusters from optical absorption

    Full text link
    The optical response of the lowest energy isomers of the B_20 family is calculated using time-dependent density functional theory within a real-space, real-time scheme. Significant differences are found among the absorption spectra of the clusters studied. We show that these differences can be easily related to changes in the overall geometry. Optical spectroscopy is thus an efficient tool to characterize the planar to tubular structural transition, known to be present in these boron based systems

    Poly(hydroxyalkanoate) production by Cupriavidus necator from fatty waste can be enhanced by phaZ1 inactivation

    Get PDF
    PHA production from waste oils or fats requires microorganisms that should be both excellent PHA producers and equipped with enzymatic activities allowing hydrolysation of triglycerides. Unfortunately, microbes with the combination of substrate-utilization and PHA production are not currently available, and the strategies to be adopted are the use of costly commercial enzymes, or genetic modification of microorganisms exhibiting high PHA product yields. In the present work, after a general investigation on the ability of Cupriavidus necator to grow on a number of fatty substrates, the possibility to enhance PHA production by limiting intracellular depolymerisation, was investigated. By knocking out the related phaZ1 gene, the construction of C. necator recombinant strains impaired in depolymerase (PhaZ1) activity was achieved. The polymer yield of the recombinant strain was finally compared to that of the parental C. necator DSM 545

    Prediction of a novel monoclinic carbon allotrope

    Full text link
    A novel allotrope of carbon with P2/mP2/m symmetry was identified during an \emph{ab-initio} minima-hopping structural search which we call M10M10-carbon. This structure is predicted to be more stable than graphite at pressures above 14.4 GPa and consists purely of sp3sp^3 bonds. It has a high bulk modulus and is almost as hard as diamond. A comparison of the simulated X-ray diffraction pattern shows a good agreement with experimental results from cold compressed graphite.Comment: 3 pages, 3 figure

    Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and Wannier interpolation

    Full text link
    The Bethe-Salpeter equation is a widely used approach to describe optical excitations in bulk semiconductors. It leads to spectra that are in very good agreement with experiment, but the price to pay for such accuracy is a very high computational burden. One of the main bottlenecks is the large number of k-points required to obtain converged spectra. In order to circumvent this problem we propose a strategy to solve the Bethe-Salpeter equation based on a double-grid technique coupled to a Wannier interpolation of the Kohn-Sham band structure. This strategy is then benchmarked for a particularly difficult case, the calculation of the absorption spectrum of GaAs, and for the well studied case of Si. The considerable gains observed in these cases fully validate our approach, and open the way for the application of the Bethe-Salpeter equation to large and complex systems.Comment: 5 pages, 3 figures. Accepted for Phys. Rev.

    Implementing clinical guidelines in an organizational setup

    Get PDF
    Outcomes research in healthcare has been a topic much addressed in recent years. Efforts in this direction have been supplemented by work in the areas of guidelines for clinical practice and computer-interpretable workflow and careflow models.In what follows we present the outlines of a framework for understanding the relations between organizations, guidelines, individual patients and patient-related functions. The derived framework provides a means to extract the knowledge contained in the guideline text at different granularities, in ways that can help us to assign tasks within the healthcare organization and to assess clinical performance in realizing the guideline. It does this in a way that preserves the flexibility of the organization in the adoption of the guidelines

    Identification of fullerene-like CdSe nanoparticles from optical spectroscopy calculations

    Full text link
    Semiconducting nanoparticles are the building blocks of optical nanodevices as their electronic states, and therefore light absorption and emission, can be controlled by modifying their size and shape. CdSe is perhaps the most studied of these nanoparticles, due to the efficiency of its synthesis, the high quality of the resulting samples, and the fact that the optical gap is in the visible range. In this article, we study light absorption of CdSe nanostructures with sizes up to 1.5 nm within density functional theory. We study both bulk fragments with wurtzite symmetry and novel fullerene-like core-cage structures. The comparison with recent experimental optical spectra allows us to confirm the synthesis of these fullerene-like CdSe clusters

    Low-density silicon allotropes for photovoltaic applications

    Full text link
    Silicon materials play a key role in many technologically relevant fields, ranging from the electronic to the photovoltaic industry. A systematic search for silicon allotropes was performed by employing a modified ab initio minima hopping crystal structure prediction method. The algorithm was optimized to specifically investigate the hitherto barely explored low-density regime of the silicon phase diagram by imitating the guest-host concept of clathrate compounds. In total 44 metastable phases are presented, of which 11 exhibit direct or quasi-direct band-gaps in the range of \approx1.0-1.8 eV, close to the optimal Shockley-Queisser limit of \approx1.4 eV, with a stronger overlap of the absorption spectra with the solar spectrum compared to conventional diamond silicon. Due to the structural resemblance to known clathrate compounds it is expected that the predicted phases can be synthesized

    Low-Energy Polymeric Phases of Alanates

    Full text link
    Low-energy structures of alanates are currently known to be described by patterns of isolated, nearly ideal tetrahedral [AlH4_4] anions and metal cations. We discover that the novel polymeric motif recently proposed for LiAlH4_4 plays a dominant role in a series of alanates, including LiAlH4_4, NaAlH4_4, KAlH4_4, Mg(AlH4_4)2_2, Ca(AlH4_4)2_2 and Sr(AlH4_4)2_2. In particular, most of the low-energy structures discovered for the whole series are characterized by networks of corner-sharing [AlH6_6] octahedra, forming wires and/or planes throughout the materials. Finally, for Mg(AlH4_4)2_2 and Sr(AlH4_4)2_2, we identify two polymeric phases to be lowest in energy at low temperatures.Comment: 9 pages, 8 figures, 2 tables, including supplemental materia

    Exact Effective action for (1+1)-dimensional fermions in an Abelian background at finite temperature and chemical potential

    Full text link
    In this paper we study the effects of a nonzero chemical potential in the effective action for massless fermions in (1+1) dimensions in an abelian gauge field background at finite temperature. We calculate the n-point function and show that the structure of the amplitudes corresponds to a generalization of the structure noted earlier in a calculation without a chemical potential (the associated integrals carry the dependence on the chemical potential). Our calculation shows that the chiral anomaly is unaffected by the presence of a chemical potential at finite temperature. However, unlike the earlier calculation (in the absence of a chemical potential) odd point functions do not vanish. We trace this to the fact that in the presence of a chemical potential the generalized charge conjugation symmetry of the theory allows for such amplitudes. In fact, we find that all the even point functions are even functions of the chemical potential while the odd point functions are odd functions of it which is consistent with this generalized charge conjugation symmetry. We show that the origin of the structure of the amplitudes is best seen from a formulation of the theory in terms of left and right handed spinors. The calculations are also much simpler in this formulation and it clarifies many other aspects of the theory

    First-principles predicted low-energy structures of NaSc(BH4)4

    Full text link
    According to previous interpretations of experimental data, sodium-scandium double-cation borohydride NaSc(BH4_4)4_4 crystallizes in the crystallographic space group CmcmCmcm where each sodium (scandium) atom is surrounded by six scandium (sodium) atoms. A careful investigation of this phase based on \textit{ab initio} calculations indicates that the structure is dynamically unstable and gives rise to an energetically and dynamically more favorable phase with C2221C222_1 symmetry and nearly identical x-ray diffraction pattern. By additionally performing extensive structural searches with the minima-hopping method we discover a class of new low-energy structures exhibiting a novel structural motif in which each sodium (scandium) atom is surrounded by four scandium (sodium) atoms arranged at the corners of either a rectangle with nearly equal sides or a tetrahedron. These new phases are all predicted to be insulators with band gaps of 7.98.27.9-8.2 eV. Finally, we estimate the influence of these structures on the hydrogen-storage performance of NaSc(BH4_4)4_4.Comment: Version publishe
    corecore