22 research outputs found
Bacillus sphaericus Binary Toxin Elicits Host Cell Autophagy as a Response to Intoxication
Bacillus sphaericus strains that produce the binary toxin (Bin) are highly toxic to Culex and Anopheles mosquitoes, and have been used since the late 1980s as a biopesticide for the control of these vectors of infectious disease agents. The Bin toxin produced by these strains targets mosquito larval midgut epithelial cells where it binds to Cpm1 (Culex pipiens maltase 1) a digestive enzyme, and causes severe intracellular damage, including a dramatic cytoplasmic vacuolation. The intoxication of mammalian epithelial MDCK cells engineered to express Cpm1 mimics the cytopathologies observed in mosquito enterocytes following Bin ingestion: pore formation and vacuolation. In this study we demonstrate that Bin-induced vacuolisation is a transient phenomenon that affects autolysosomes. In addition, we show that this vacuolisation is associated with induction of autophagy in intoxicated cells. Furthermore, we report that after internalization, Bin reaches the recycling endosomes but is not localized either within the vacuolating autolysosomes or within any other degradative compartment. Our observations reveal that Bin elicits autophagy as the cell's response to intoxication while protecting itself from degradation through trafficking towards the recycling pathways
Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance
To study the potential for the emergence of resistance in Aedes aegypti populations, a wild colony was subjected to selective pressure with Cry11Aa, one of four endotoxins that compose the Bacillus thuringiensis serovar israelensis toxin. This bacterium is the base component of the most important biopesticide used in the control of mosquitoes worldwide. After 54 generations of selection, significant resistance levels were observed. At the beginning of the selection experiment, the half lethal concentration was 26.3 ng/mL and had risen to 345.6 ng/mL by generation 54. The highest rate of resistance, 13.1, was detected in the 54th generation. Because digestive proteases play a key role in the processing and activation of B. thuringiensis toxin, we analysed the involvement of insect gut proteases in resistance to the Cry11Aa B. thuringiensis serovar israelensis toxin. The protease activity from larval gut extracts from the Cry11Aa resistant population was lower than that of the B. thuringiensisserovar israelensis susceptible colony. We suggest that differences in protoxin proteolysis could contribute to the resistance of this Ae. aegypti colony