2,159 research outputs found

    Didactic Sequence for Teaching Exponential Function

    Get PDF
    This paper presents a methodological proposal for the teaching of exponential function, resulting from the application of a didactic sequence involving exponential function, where evidence of learning and the consolidation and application of mathematical concepts in problem solving were identified and analyzed. The Didactic Engineering of Michèle Artigue (1988) was used as a research methodology. As theoretical contributions that guided and enabled the development of the research, we chose the use of Mathematical Investigation in the classroom; Didactic Sequence in the conception of Zabala (1999); the Articulated Units of Conceptual Reconstruction proposed by Cabral (2017) and assumptions of Vygotsky\u27s theory. A didactic sequence composed of five UARC\u27s was elaborated to work the exponential function, with a view to minimizing the difficulties naturally imposed by the content to be explained. Microgenetic analysis of verbal interactions between teacher and students was used to analyze the results of the application. The results show that the students participating in the experiment showed evidence of learning, recorded during the process, and began to have a good understanding of the concepts and properties related to the topic, in addition to a good performance in carrying out the activities, facts that corroborate the potential of the didactic sequence proposed herein

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    corecore