60,609 research outputs found
Universality class for bootstrap percolation with on the cubic lattice
We study the bootstrap percolation model on a cubic lattice, using
Monte Carlo simulation and finite-size scaling techniques. In bootstrap
percolation, sites on a lattice are considered occupied (present) or vacant
(absent) with probability or , respectively. Occupied sites with less
than occupied first-neighbours are then rendered unoccupied; this culling
process is repeated until a stable configuration is reached. We evaluate the
percolation critical probability, , and both scaling powers, and
, and, contrarily to previous calculations, our results indicate that the
model belongs to the same universality class as usual percolation (i.e.,
). The critical spanning probability, , is also numerically
studied, for systems with linear sizes ranging from L=32 up to L=480: the value
we found, , is the same as for usual percolation with
free boundary conditions.Comment: 11 pages; 4 figures; to appear in Int. J. Mod. Phys.
Vortex state microwave resistivity in Tl-2212 thin films
We present measurements of the field induced changes in the 47 GHz complex
resistivity, , in TlBaCaCuO
(TBCCO) thin films with 105 K, prepared on CeO buffered
sapphire substrates. At low fields (10 mT) a very small irreversible
feature is present, suggesting a little role of intergranular phenomena. Above
that level exhibits a superlinear dependence with the
field, as opposed to the expected (at high frequencies) quasilinear behaviour.
We observe a crossover between predominantly imaginary to predominantly real
(dissipative) response with increasing temperature and/or field. In addition,
we find the clear scaling property , where the scaling field maps closely the melting
field measured in single crystals. We discuss our microwave results in terms of
loss of flux lines rigidity.Comment: 8 pages, 3 figures, proceedings of 9th HTSHFF, accepted for
publication on J. Supercon
Anisotropic renormalized fluctuations in the microwave resistivity in YBCO
We discuss the excess conductivity above Tc due to renormalized
order-parameter fluctuations in YBCO at microwave frequencies. We calculate the
effects of the uniaxial anisotropy on the renormalized fluctuations in the
Hartree approximation, extending the isotropic theory developed by Dorsey
[Phys. Rev. B 43, 7575 (1991)]. Measurements of the real part of the microwave
resistivity at 24 and 48 GHz and of the dc resistivity are performed on
different YBCO films. The onset of the superconducting transition and the
deviation from the linear temperature behavior above Tc can be fully accounted
for by the extended theory. According to the theoretical calculation here
presented, a departure from gaussian toward renormalized fluctuations is
observed. Very consistent values of the fundamental parameters (critical
temperature, coherence lenghts, penetration depth) of the superconducting state
are obtained.Comment: RevTex, 8 pages with 5 figures included, to be published in Physical
Review
Mixed-state microwave response in superconducting cuprates
We report measurements of the magnetic-field induced microwave complex
resistivity in REBaCuO thin films, with RE = Y, Sm.
Measurements are performed at 48 GHz by means of a resonant cavity in the
end-wall-replacement configuration. The magnetic field dependence is
investigated by applying a moderate (0.8 T) magnetic field along the c-axis.
The measured vortex state complex resistivity in
YBaCuO and SmBaCuO is
analyzed within the well-known models for vortex dynamics. It is shown that
attributing the observed response to vortex motion alone leads to
inconsistencies in the as-determined vortex parameters (such as the vortex
viscosity and the pinning constant). By contrast, attributing the entire
response to field-induced pair breaking leads to a nearly quantitative
description of the data.Comment: 6 pages, 4 figures, to be published in J. Supercond. as proceedings
of 8th HTSHFF (May 26th-29th, 2004, Begur, Spain
Predicted defect induced vortex core switching in thin magnetic nanodisks
We investigate the influence of artificial defects (small holes) inserted
into magnetic nanodisks on the vortex core dynamics. One and two holes
(antidots) are considered. In general, the core falls into the hole but, in
particular, we would like to remark an interesting phenomenon not yet observed,
which is the vortex core switching induced by the vortex-hole interactions. It
occurs for the case with only one hole and for very special conditions
involving the hole size and position as well as the disk size. Any small
deformation in the disk geometry such as the presence of a second antidot
changes completely the vortex dynamics and the vortex core eventually falls
into one of the defects. After trapped, the vortex center still oscillates with
a very high frequency and small amplitude around the defect center.Comment: 11pages, Revtex format, 17 figure
The Left-Right SU(3)(L)xSU(3)(R)xU(1)(X) Model with Light, keV and Heavy Neutrinos
We construct a full left-right model for the electroweak interactions based
on the gauge symmetry. The fermion
content of the model is such that anomaly cancellation restricts the number of
families to be a multiple of three. One of the most important features of the
model is the joint presence of three light active neutrinos, three additional
neutrinos at keV mass scale, and six heavy ones with masses
around\textbf{} GeV. They form a well-motivated part of the spectrum
in the sense they address challenging problems related to neutrino oscillation,
warm dark matter, and baryogenesis through leptogenesis.Comment: 11 pages. Small corrections and typos fixed. Accepted for publication
in PR
Robotic construction analysis: Simulation with virtual reality
Advances in robotic construction are evident and increasing every year, bringing present and potential improvements. However, the economic and social impacts are hard to assess and quantify without physical in situ testing, which is expensive and time-consuming. This paper presents a methodology for the simulation of robotic construction technologies, namely drones, using a virtual reality environment. Our hypothesis is that a virtual reality simulation of a robotic construction (H1) has the potential of increasing the precision of predicting the construction duration and cost and (H2) allows for the detection of construction problems. The study begins with a review of the literature on drones, robotic arms, and hybrid automatic construction solutions, as well as virtual reality construction simulations, summarising the robotic technologies currently being used, mainly in academic research, to assemble construction elements. It then proposes a construction simulation methodology applied to three architectonic elements to analyse different approaches and different scenarios for robotic construction simulation methodology. A construction simulation is tested, and the data is analysed and compared with traditional construction methods, focussing on construction time and costs.info:eu-repo/semantics/publishedVersio
Quantum anisotropic Heisenberg chains with superlattice structure: a DMRG study
Using the density matrix renormalization group technique, we study spin
superlattices composed of a repeated pattern of two spin-1/2 XXZ chains with
different anisotropy parameters. The magnetization curve can exhibit two
plateaus, a non trivial plateau with the magnetization value given by the
relative sizes of the sub-chains and another trivial plateau with zero
magnetization. We find good agreement of the value and the width of the
plateaus with the analytical results obtained previously. In the gapless
regions away from the plateaus, we compare the finite-size spin gap with the
predictions based on bosonization and find reasonable agreement. These results
confirm the validity of the Tomonaga-Luttinger liquid superlattice description
of these systems.Comment: 6 pages, 6 figure
- …