6,754 research outputs found

    The forms and functions of switch reference in A’ingae

    Get PDF
    This paper examines switch reference (SR) in A’ingae, an understudied isolate language from Amazonian Ecuador. We present a theoretically informed survey of SR, identifying three distinct uses of switch reference: in clause chaining, adverbial clauses, and so-called ‘bridging’ clause linkage. We describe the syntactic and semantic properties of each use in detail, the first such description for A’ingae, showing that the three constructions differ in important ways. While leaving a full syntactic analysis to future work, we argue that these disparate properties preclude a syntactic account that unifies these three constructions to the exclusion of other environments without SR. Conversely, while a full semantic account is also left to future work, we suggest that a unified semantic account in terms of discourse coherence principles appears more promising. In particular, we propose that switch reference in A’ingae occurs in all and only the constructions that are semantically restricted to non-structuring coordinating coherence relations in the sense of Segmented Discourse Representation Theory

    Prefrontal and Motor Planning Cortical Activity during Stepping Tasks Is Related to Task Complexity but Not Concern about Falling in Older People: A fNIRS Study

    Full text link
    This study investigated the effect of concern about falling on neural efficiency during stepping in older people. Community-dwellers aged >65 years were categorised as having low (n = 71) and high (n = 28) concerns about falling based on the Iconographical Falls Efficacy Scale (IconFES 10-item, scores <19 and ≥19, respectively). Participants performed a choice stepping reaction time test (CSRT), an inhibitory CSRT (iCSRT), and a Stroop stepping test (SST)) on a computerised step mat. Cortical activity was recorded using functional near-infrared spectroscopy. There were no significant differences in stepping response times or cortical activity in the dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and premotor cortex (PMC) between those with and without concern about falling. However, stepping response times and cortical activity in the PFC, SMA, and PMC were significantly higher in the SST compared with the CSRT in the whole sample. PMC activity was also higher in the SST compared to the iCSRT. These findings demonstrate that cortical activity is higher in cognitively demanding stepping tasks that require selective attention and inhibition in healthy older people. The lack of association between concern about falling and neural efficiency during stepping in this older sample may reflect their only moderate scores on the IconFES

    Cognitive and Motor Cortical Activity During Cognitively Demanding Stepping Tasks in Older People at Low and High Risk of Falling

    Full text link
    Background: Choice stepping reaction time tasks are underpinned by neuropsychological, sensorimotor, and balance systems and therefore offer good indices of fall risk and physical and cognitive frailty. However, little is known of the neural mechanisms for impaired stepping and associated fall risk in older people. We investigated cognitive and motor cortical activity during cognitively demanding stepping reaction time tasks using functional near-infrared spectroscopy (fNIRS) in older people at low and high fall risk. Methods: Ninety-five older adults [mean (SD) 71.4 (4.9) years, 23 men] were categorized as low or high fall risk [based on 12-month fall history (≥2 falls) and/or Physiological Profile Assessment fall risk score ≥1]. Participants performed a choice stepping reaction time test and a more cognitively demanding Stroop stepping task on a computerized step mat. Cortical activity in cognitive [dorsolateral prefrontal cortex (DLPFC)] and motor (supplementary motor area and premotor cortex) regions was recorded using fNIRS. Stepping performance and cortical activity were contrasted between the groups and between the choice and Stroop stepping conditions. Results: Compared with the low fall risk group (n = 71), the high fall risk group (n = 24) exhibited significantly greater DLPFC activity and increased intra-individual variability in stepping response time during the Stroop stepping task. The high fall risk group DLPFC activity was greater during the performance of Stroop stepping task in comparison with choice stepping reaction time. Regardless of group, the Stroop stepping task elicited increased cortical activity in the supplementary motor area and premotor cortex together with increased mean and intra-individual variability of stepping response times. Conclusions: Older people at high fall risk exhibited increased DLPFC activity and stepping response time variability when completing a cognitively demanding stepping test compared with those at low fall risk and to a simpler choice-stepping reaction time test. This increased hemodynamic response might comprise a compensatory process for postural control deficits and/or reflect a degree of DLPFC neural inefficiency in people with increased fall risk

    Structure and energetics of extended defects in ice I-h

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)We consider the molecular structure and energetics of extended defects in proton-disordered hexagonal ice I-h. Using plane-wave density functional theory (DFT) calculations, we compute the energetics of stacking faults and determine the structure of the 30 degrees and 90 degrees partial dislocations on the basal plane. Consistent with experimental data, the formation energies of all fully reconstructed stacking faults are found to be very low. This is consistent with the idea that basal-plane glide dislocations in ice I-h are dissociated into partial dislocations separated by an area of stacking fault. For both types of partial dislocation we find a strong tendency toward core reconstruction through pairwise hydrogen-bond reformation. In the case of the 30 degrees dislocation, the pairwise hydrogen-bond formation leads to a period-doubling core structure equivalent to that seen in zinc-blende semiconductor crystals. For the 90 degrees partial we consider two possible core reconstructions, one in which the periodicity of the structure along the core remains unaltered and another in which it is doubled. The latter is preferred, although the energy difference between both is rather small, so that a coexistence of both reconstructions appears plausible. Our results imply that a mobility theory for dislocations on the basal plane in ice I-h should be based on the idea of reconstructed partial dislocations.852Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Measuring attitude towards Buddhism and Sikhism : internal consistency reliability for two new instruments

    Get PDF
    This paper describes and discusses the development and empirical properties of two new 24-item scales – one measuring attitude toward Buddhism and the other measuring attitude toward Sikhism. The scale is designed to facilitate inter-faith comparisons within the psychology of religion alongside the well-established Francis Scale of Attitude toward Christianity. Data were obtained from a multi-religious sample of 369 school pupils aged between 13 and 15 in London. Application of the two scales demonstrated that adolescents had a more positive attitude to Buddhism than Sikhism. The findings confirm the reliability of the scales and commend them for further use

    Effective configurations in electron-molecule scattering

    Get PDF
    We present a more efficient way of treating polarization effects in the scattering of low-energy electrons by molecules within the Schwinger multichannel (SMC) method. We propose to expand the scattering wave function in a set of functions of N + 1 electrons that describe the scattering in an effective way, which allows the use of a small number of functions to describe the polarization effects. As a first test, we apply the method to the scattering of electrons by the H-2 molecule. We calculate elastic integral and differential cross sections, and we obtain excellent results with a reduction in the number of configurations of up to 98% when compared to the traditional method used in the SMC method. This is a substantial size reduction of all matrices involved in the SMC method and, as a consequence, it represents a promising technique for treating more complex molecular systems.61

    Speeding up the constraint-based method in difference logic

    Get PDF
    "The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-40970-2_18"Over the years the constraint-based method has been successfully applied to a wide range of problems in program analysis, from invariant generation to termination and non-termination proving. Quite often the semantics of the program under study as well as the properties to be generated belong to difference logic, i.e., the fragment of linear arithmetic where atoms are inequalities of the form u v = k. However, so far constraint-based techniques have not exploited this fact: in general, Farkas’ Lemma is used to produce the constraints over template unknowns, which leads to non-linear SMT problems. Based on classical results of graph theory, in this paper we propose new encodings for generating these constraints when program semantics and templates belong to difference logic. Thanks to this approach, instead of a heavyweight non-linear arithmetic solver, a much cheaper SMT solver for difference logic or linear integer arithmetic can be employed for solving the resulting constraints. We present encouraging experimental results that show the high impact of the proposed techniques on the performance of the VeryMax verification systemPeer ReviewedPostprint (author's final draft

    Adjunct primer for the use of national comprehensive cancer network guidelines for the surgical management of cutaneous malignant melanoma patients

    Get PDF
    Recently, a Surveillance Epidemiology and End Results (SEER) survey of melanoma patterns of care by the Mayo Clinic, Scottsdale showed remarkable deviations from best practice patterns throughout the country. The study, which analyzed the SEER records of 35,126 stage I to III cutaneous malignant melanoma patients treated from 2004 to 2006, showed that adherence to National Comprehensive Cancer Network (NCCN) therapeutic resection margins occurred in less than 36% of patients. Similarly, considerable variation in the quality of melanoma care in the United States when assessed using 26 quality indicators drawn by a panel of melanoma experts was independently reported. These observations underscore the significant lack of adherence to published best practice patterns reflected by the NCCN guidelines. The untoward effects of these variations in practice pattern can have an inordinate impact on the survival of melanoma patients in whom long term outcomes are affected by the adequacy of surgical management. Thin malignant melanoma is curable; however, thick or node positive melanoma is often incurable. This outcome is determined not only by the stage at presentation but by the use of best practice patterns as reflected in current NCCN cutaneous melanoma practice guidelines

    The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle

    Full text link
    The temperature anomalies in the Earth's mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over 2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001

    Scale invariance and universality of force networks in static granular matter

    Full text link
    Force networks form the skeleton of static granular matter. They are the key ingredient to mechanical properties, such as stability, elasticity and sound transmission, which are of utmost importance for civil engineering and industrial processing. Previous studies have focused on the global structure of external forces (the boundary condition), and on the probability distribution of individual contact forces. The disordered spatial structure of the force network, however, has remained elusive so far. Here we report evidence for scale invariance of clusters of particles that interact via relatively strong forces. We analyzed granular packings generated by molecular dynamics simulations mimicking real granular matter; despite the visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, and thus determine a universality class. Remarkably, the flat ensemble of force configurations--a simple generalization of equilibrium statistical mechanics--belongs to the same universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur
    corecore