605 research outputs found

    Inequalities for eigenvalues of operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space

    Full text link
    In this paper, we compute universal inequalities of eigenvalues of a large class of second-order elliptic differential operators in divergence form, that includes, e.g., the Laplace and Cheng-Yau operators, on a bounded domain in a complete Riemannian manifolds isometrically immersed in Euclidean space. A key step in order to obtain the sequence of our estimates is to get the right Yang-type first inequality. We also prove some inequalities for manifolds supporting some special functions and tensors.Comment: 15 pages. arXiv admin note: text overlap with arXiv:2206.0943

    Alpha and beta phylogenetic diversities jointly reveal ant community assembly mechanisms along a tropical elevational gradient

    Get PDF
    Despite the long-standing interest in the organization of ant communities across elevational gradients, few studies have incorporated the evolutionary information to understand the historical processes that underlay such patterns. Through the evaluation of phylogenetic α and β-diversity, we analyzed the structure of leaf-litter ant communities along the Cofre de Perote mountain in Mexico and evaluated whether deterministic- (i.e., habitat filtering, interspecific competition) or stochastic-driven processes (i.e., dispersal limitation) were driving the observed patterns. Lowland and some highland sites showed phylogenetic clustering, whereas intermediate elevations and the highest site presented phylogenetic overdispersion. We infer that strong environmental constraints found at the bottom and the top elevations are favoring closely-related species to prevail at those elevations. Conversely, less stressful climatic conditions at intermediate elevations suggest interspecific interactions are more important in these environments. Total phylogenetic dissimilarity was driven by the turnover component, indicating that the turnover of ant species along the mountain is actually shifts of lineages adapted to particular locations resembling their ancestral niche. The greater phylogenetic dissimilarity between communities was related to greater temperature differences probably due to narrow thermal tolerances inherent to several ant lineages that evolved in more stable conditions. Our results suggest that the interplay between environmental filtering, interspecific competition and habitat specialization plays an important role in the assembly of leaf-litter ant communities along elevational gradients

    Heterologous expression and functional characterization of a GH10 endoxylanase from \u3ci\u3eAspergillus fumigatus\u3c/i\u3e var. \u3ci\u3eniveus\u3c/i\u3e with potential biotechnological application

    Get PDF
    Xylanases decrease the xylan content in pretreated biomass releasing it from hemicellulose, thus improving the accessibility of cellulose for cellulases. In this work, an endo-β-1,4-xylanase from Aspergillus fumigatus var. niveus (AFUMN-GH10) was successfully expressed. The structural analysis and biochemical characterization showed this AFUMN-GH10 does not contain a carbohydrate-binding module. The enzyme retained its activity in a pH range from 4.5 to 7.0, with an optimal temperature at 60°C. AFUMN-GH10 showed the highest activity in beechwood xylan. The mode of action of AFUMNGH10 was investigated by hydrolysis of APTS-labeled xylohexaose, which resulted in xylotriose and xylobiose as the main products. AFUMN-GH10 released 27% of residual xylan from hydrothermally-pretreated corn stover and 14% of residual xylan from hydrothermally-pretreated sugarcane bagasse. The results showed that environmentally friendly pretreatment followed by enzymatic hydrolysis with AFUMN-GH10 in low concentration is a suitable method to remove part of residual and recalcitrant hemicellulose from biomass

    Nonuniversality in the pair contact process with diffusion

    Full text link
    We study the static and dynamic behavior of the one dimensional pair contact process with diffusion. Several critical exponents are found to vary with the diffusion rate, while the order-parameter moment ratio m=\bar{rho^2} /\bar{rho}^2 grows logarithmically with the system size. The anomalous behavior of m is traced to a violation of scaling in the order parameter probability density, which in turn reflects the presence of two distinct sectors, one purely diffusive, the other reactive, within the active phase. Studies restricted to the reactive sector yield precise estimates for exponents beta and nu_perp, and confirm finite size scaling of the order parameter. In the course of our study we determine, for the first time, the universal value m_c = 1.334 associated with the parity-conserving universality class in one dimension.Comment: 9 pages, 5 figure

    Applications Know Best: Performance-Driven Memory Overcommit with Ginkgo

    Full text link
    Abstract—Memory overcommitment enables cloud providers to host more virtual machines on a single physical server, exploiting spare CPU and I/O capacity when physical memory becomes the bottleneck for virtual machine deployment. However, overcommiting memory can also cause noticeable application performance degradation. We present Ginkgo, a policy frame-work for overcomitting memory in an informed and automated fashion. By directly correlating application-level performance to memory, Ginkgo automates the redistribution of scarce memory across all virtual machines, satisfying performance and capacity constraints. Ginkgo also achieves memory gains for traditionally fixed-size Java applications by coordinating the redistribution of available memory with the activities of the Java Virtual Machine heap. When compared to a non-overcommited system, Ginkgo runs the DayTrader 2.0 and SPECWeb 2009 benchmarks with the same number of virtual machines while saving up to 73% (50 % omitting free space) of a physical server’s memory while keeping application performance degradation within 7%. I

    Magnetic response dependence of ZnO based thin films on Ag doping and processing architecture

    Get PDF
    Multifunctional and multiresponsive thin films are playing an increasing role in modern technology. This work reports a study on the magnetic properties of ZnO and Ag-doped ZnO semiconducting films prepared with a zigzag-like columnar architecture and their correlation with the processing conditions. The films were grown through Glancing Angle Deposition (GLAD) co-sputtering technique to improve the induced ferromagnetism at room temperature. Structural and morphological characterizations have been performed and correlated with the paramagnetic resonance measurements, which demonstrate the existence of vacancies in both as-cast and annealed films. The magnetic measurements reveal changes in the magnetic order of both ZnO and Ag-doped ZnO films with increasing temperature, showing an evolution from a paramagnetic (at low temperature) to a diamagnetic behavior (at room temperature). Further, the room temperature magnetic properties indicate a ferromagnetic order even for the un-doped ZnO film. The results open new perspectives for the development of multifunctional ZnO semiconductors, the GLAD co-sputtering technique enables the control of the magnetic response, even in the un-doped semiconductor materials.The Brazilian agencies CNPq, CAPES partially supports the research. From Portugal side, this work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2020 and the junior research contract (A.F.). Financial support from the Basque Government Industry Department under the ELKARTEK. HAZITEK and PIBA programs is also acknowledged
    corecore