78 research outputs found

    Collagen-induced arthritis as an animal model of rheumatoid cachexia

    Get PDF
    Background Rheumatoid arthritis is characterized by chronic polyarticular synovitis and presents systemic changes that impact quality of life, such as impaired muscle function, seen in up to 66% of the patients. This can progress to severely debilitating state known as rheumatoid cachexia—without loss of fat mass and body weight—for which there is little consensus in terms of diagnosis or treatment. This study aims to evaluate whether the collagen-induced arthritis (CIA) animal model also develops clinical and functional features characteristic of rheumatoid cachexia. Methods Male DBA1/J mice were randomly divided into 2 groups: healthy animals (CO, n = 11) and CIA animals (n = 13). The clinical score and edema size, animal weight and food intake, free exploratory locomotion, grip strength, and endurance exercise performance were tested 0, 18, 35, 45, 55, and 65 days after disease induction. After euthanasia, several organs, visceral and brown fat, and muscles were dissected and weighed. Muscles were used to assess myofiber diameter. Ankle joint was used to assess arthritis severity by histological score. Statistical analysis were performed using one-way and two-way analyses of variance followed by Tukey’s and Bonferroni’s test or t-test of Pearson and statistical difference were assumed for a P value under 0.05. Background Rheumatoid arthritis is characterized by chronic polyarticular synovitis and presents systemic changes that impact quality of life, such as impaired muscle function, seen in up to 66% of the patients. This can progress to severely debilitating state known as rheumatoid cachexia—without loss of fat mass and body weight—for which there is little consensus in terms of diagnosis or treatment. This study aims to evaluate whether the collagen-induced arthritis (CIA) animal model also develops clinical and functional features characteristic of rheumatoid cachexia. Methods Male DBA1/J mice were randomly divided into 2 groups: healthy animals (CO, n = 11) and CIA animals (n = 13). The clinical score and edema size, animal weight and food intake, free exploratory locomotion, grip strength, and endurance exercise performance were tested 0, 18, 35, 45, 55, and 65 days after disease induction. After euthanasia, several organs, visceral and brown fat, and muscles were dissected and weighed. Muscles were used to assess myofiber diameter. Ankle joint was used to assess arthritis severity by histological score. Statistical analysis were performed using one-way and two-way analyses of variance followed by Tukey’s and Bonferroni’s test or t-test of Pearson and statistical difference were assumed for a P value under 0.0

    Metabolomic biomarker candidates for skeletal muscle loss in the collagen-induced arthritis (CIA) model

    Get PDF
    There is no consensus for diagnosis or treatment of RA muscle loss. We aimed to investigate metabolites in arthritic mice urine as biomarkers of muscle loss. DBA1/J mice comprised collagen-induced arthritis (CIA) and control (CO) groups. Urine samples were collected at 0, 18, 35, 45, 55, and 65 days of disease and subjected to nuclear magnetic resonance spectroscopy. Metabolites were identified using Chenomx and Birmingham Metabolite libraries. The statistical model used principal component analysis, partial least-squares discriminant analysis, and partial least-squares regression analysis. Linear regression and Fisher’s exact test via the MetaboAnalyst website were performed (VIP-score). Nearly 100 identified metabolites had CIA vs. CO and disease time-dependent differences (p < 0.05). Twenty-eight metabolites were muscle-associated: carnosine (VIPs 2.8 × 102) and succinyl acetone (VIPs 1.0 × 10) showed high importance in CIA vs. CO models at day 65; CIA pair analysis showed histidine (VIPs 1.2 × 102) days 55 vs. 65, histamine (VIPs 1.1 × 102) days 55 vs. 65, and L-methionine (VIPs 1.1 × 102) days 0 vs. 18. Carnosine was fatigue- (0.039) related, creatine was food intake- (−0.177) and body weight- (−0.039) related, and both metabolites were clinical score- (0.093; 0.050) and paw edema- (0.125; 0.026) related. Therefore, muscle metabolic alterations were detected in arthritic mice urine, enabling further validation in RA patient’s urine, targeting prognosis, diagnosis, and monitoring of RA-mediated muscle loss
    • 

    corecore