83,465 research outputs found

    Magnetic monopole and string excitations in a two-dimensional spin ice

    Full text link
    We study the magnetic excitations of a square lattice spin-ice recently produced in an artificial form, as an array of nanoscale magnets. Our analysis, based upon the dipolar interaction between the nanomagnetic islands, correctly reproduces the ground-state observed experimentally. In addition, we find magnetic monopole-like excitations effectively interacting by means of the usual Coulombic plus a linear confining potential, the latter being related to a string-like excitation binding the monopoles pairs, what indicates that the fractionalization of magnetic dipoles may not be so easy in two dimensions. These findings contrast this material with the three-dimensional analogue, where such monopoles experience only the Coulombic interaction. We discuss, however, two entropic effects that affect the monopole interactions: firstly, the string configurational entropy may loose the string tension and then, free magnetic monopoles should also be found in lower dimensional spin ices; secondly, in contrast to the string configurational entropy, an entropically driven Coulomb force, which increases with temperature, has the opposite effect of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009

    Magnetization reversals in a disk-shaped small magnet with an interface

    Full text link
    We consider a nanodisk possessing two coupled materials with different ferromagnetic exchange constant. The common border line of the two media passes at the disk center dividing the system exactly in two similar half-disks. The vortex core motion crossing the interface is investigated with a simple description based on a two-dimensional model which mimics a very thin real material with such a line defect. The main result of this study is that, depending on the magnetic coupling which connects the media, the vortex core can be dramatically and repeatedly flipped from up to down and vice versa by the interface. This phenomenon produces burst-like emission of spin waves each time the switching process takes place.Comment: 11 pages, 10 figure

    Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities

    Get PDF
    Skyrmions are topologically protected field structures with particlelike characteristics that play important roles in several areas of science. Recently, skyrmions have been directly observed in chiral magnets. Here, we investigate the effects of pointlike nonmagnetic impurities on the distinct initial states (random or helical ones) and on the formation of the skyrmion crystal in a discrete lattice. Using Monte Carlo techniques, we have found that even a small percentage of spin vacancies present in the chiral magnetic thin film considerably affects the skyrmion order. The main effects of impurities are somewhat similar to thermal effects. The presence of these spin vacancies also induces the formation of bimerons in both the helical and skyrmion states. We also investigate how adjacent impurities forming a hole affect the skyrmion crystal

    Genetic diversity of Lusitano horse in Brazil using pedigree information

    Get PDF
    This study aimed to evaluate population parameters and to describe the genetic diversity of the Lusitano breed in Brazil using pedigree data. Two populations were evaluated: total population (TP) containing 18,922 animals, and reference population (RP) composed of a part of TP containing 8,329 animals, representing the last generation. The generation interval (10.1 ± 5.1 years) was in the range for horse populations. Pedigree completeness in RP shows almost 100% filling in the three most recent generations, indicating improvement in the pedigree data and accuracy of the results, and the inbreeding coefficient (4.46%) and average relatedness (5.97%) for RP, indicating control on the part of breeders. The effective population size was 89 (TP) and 90 (RP). The effective number of founders (fe) were 33 and 29, effective number of ancestors (fa) were 30 and 26, and effective number of founder genomes (fg) were 19 and 15 for TP and RP, respectively, indicating a reduction of genetic variability in the last generations. The total number of ancestors that explains 100% of the genetic diversity in the Lusitano breed in Brazil was 427 (TP) and 341 (RP). The reproductive parameters, probabilities of gene origin showing loss of variability in the last generations, and the genetic contributions of ancestors suggest the need to monitor genetic diversity over time in breeding programs to allow control of the next generations and to increase their variability.info:eu-repo/semantics/publishedVersio

    Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping

    Get PDF
    A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales  ~104 ωpe−1 \tilde \, 10^4 \, {\omega}_{pe}^{-1}. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well-confined to the downstream region of the electrostatic shock. The shock formation process is not modified and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock

    The impact of kinetic effects on the properties of relativistic electron-positron shocks

    Get PDF
    We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first principle particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease of the upstream bulk speed yields deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time
    • …
    corecore