9,452 research outputs found
The effects of aeroelastic deformation on the unaugmented stopped-rotor dynamics of an X-Wing aircraft
A new design concept in the development of VTOL aircraft with high forward flight speed capability is that of the X-Wing, a stiff, bearingless helicopter rotor system which can be stopped in flight and the blades used as two forward-swept and two aft-swept wings. Because of the usual configuration in the fixed-wing mode, there is a high potential for aeroelastic divergence or flutter and coupling of blade vibration modes with rigid-body modes. An aeroelastic stability analysis of an X-Wing configuration aircraft was undertaken to determine if these problems could exist. This paper reports on the results of dynamic stability analyses in the lateral and longitudinal directions including the vehicle rigid-body and flexible modes. A static aeroelastic analysis using the normal vibration mode equations of motion was performed to determine the cause of a loss of longitudinal static margin with increasing airspeed. This loss of static margin was found to be due to aeroelastic washin of the forward-swept blades and washout of the aft-swept blades moving the aircraft aerodynamic center forward of the center of gravity. This phenomenon is likely to be generic to X-Wing aircraft
On the dynamics of initially correlated open quantum systems: theory and applications
We show that the dynamics of any open quantum system that is initially
correlated with its environment can be described by a set of (or less)
completely positive maps, where d is the dimension of the system. Only one such
map is required for the special case of no initial correlations. The same maps
describe the dynamics of any system-environment state obtained from the initial
state by a local operation on the system. The reduction of the system dynamics
to a set of completely positive maps allows known numerical and analytic tools
for uncorrelated initial states to be applied to the general case of initially
correlated states, which we exemplify by solving the qubit dephasing model for
such states, and provides a natural approach to quantum Markovianity for this
case. We show that this set of completely positive maps can be experimentally
characterised using only local operations on the system, via a generalisation
of noise spectroscopy protocols. As further applications, we first consider the
problem of retrodicting the dynamics of an open quantum system which is in an
arbitrary state when it becomes accessible to the experimenter, and explore the
conditions under which retrodiction is possible. We also introduce a related
one-sided or limited-access tomography protocol for determining an arbitrary
bipartite state, evolving under a sufficiently rich Hamiltonian, via local
operations and measurements on just one component. We simulate this protocol
for a physical model of particular relevance to nitrogen-vacancy centres, and
in particular show how to reconstruct the density matrix of a set of three
qubits, interacting via dipolar coupling and in the presence of local magnetic
fields, by measuring and controlling only one of them.Comment: 19 pages. Comments welcom
Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter
The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible
NACA0012 benchmark model experimental flutter results with unsteady pressure distributions
The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented
Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy?
Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the ateriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors
Dynamical quantum phase transitions in systems with continuous symmetry breaking
Interacting many-body systems that are driven far away from equilibrium can
exhibit phase transitions between dynamically emerging quantum phases, which
manifest as singularities in the Loschmidt echo. Whether and under which
conditions such dynamical transitions occur in higher-dimensional systems with
spontaneously broken continuous symmetries is largely elusive thus far. Here,
we study the dynamics of the Loschmidt echo in the three dimensional O(N) model
following a quantum quench from a symmetry breaking initial state. The O(N)
model exhibits a dynamical transition in the asymptotic steady state,
separating two phases with a finite and vanishing order parameter, that is
associated with the broken symmetry. We analytically calculate the rate
function of the Loschmidt echo and find that it exhibits periodic kink
singularities when this dynamical steady-state transition is crossed. The
singularities arise exactly at the zero-crossings of the oscillating order
parameter. As a consequence, the appearance of the kink singularities in the
transient dynamics is directly linked to a dynamical transition in the order
parameter. Furthermore, we argue, that our results for dynamical quantum phase
transitions in the O(N) model are general and apply to generic systems with
continuous symmetry breaking.Comment: 7 pages, 6 figure
UvrC Coordinates an Oâ‚‚-Sensitive [4Fe4S] Cofactor
Recent advances have led to numerous landmark discoveries of [4Fe4S] clusters coordinated by essential enzymes in repair, replication, and transcription across all domains of life. The cofactor has notably been challenging to observe for many nucleic acid processing enzymes due to several factors, including a weak bioinformatic signature of the coordinating cysteines and lability of the metal cofactor. To overcome these challenges, we have used sequence alignments, an anaerobic purification method, iron quantification, and UV–visible and electron paramagnetic resonance spectroscopies to investigate UvrC, the dual-incision endonuclease in the bacterial nucleotide excision repair (NER) pathway. The characteristics of UvrC are consistent with [4Fe4S] coordination with 60–70% cofactor incorporation, and additionally, we show that, bound to UvrC, the [4Fe4S] cofactor is susceptible to oxidative degradation with aggregation of apo species. Importantly, in its holo form with the cofactor bound, UvrC forms high affinity complexes with duplexed DNA substrates; the apparent dissociation constants to well-matched and damaged duplex substrates are 100 ± 20 nM and 80 ± 30 nM, respectively. This high affinity DNA binding contrasts reports made for isolated protein lacking the cofactor. Moreover, using DNA electrochemistry, we find that the cluster coordinated by UvrC is redox-active and participates in DNA-mediated charge transport chemistry with a DNA-bound midpoint potential of 90 mV vs NHE. This work highlights that the [4Fe4S] center is critical to UvrC
UvrC Coordinates an Oâ‚‚-Sensitive [4Fe4S] Cofactor
Recent advances have led to numerous landmark discoveries of [4Fe4S] clusters coordinated by essential enzymes in repair, replication, and transcription across all domains of life. The cofactor has notably been challenging to observe for many nucleic acid processing enzymes due to several factors, including a weak bioinformatic signature of the coordinating cysteines and lability of the metal cofactor. To overcome these challenges, we have used sequence alignments, an anaerobic purification method, iron quantification, and UV–visible and electron paramagnetic resonance spectroscopies to investigate UvrC, the dual-incision endonuclease in the bacterial nucleotide excision repair (NER) pathway. The characteristics of UvrC are consistent with [4Fe4S] coordination with 60–70% cofactor incorporation, and additionally, we show that, bound to UvrC, the [4Fe4S] cofactor is susceptible to oxidative degradation with aggregation of apo species. Importantly, in its holo form with the cofactor bound, UvrC forms high affinity complexes with duplexed DNA substrates; the apparent dissociation constants to well-matched and damaged duplex substrates are 100 ± 20 nM and 80 ± 30 nM, respectively. This high affinity DNA binding contrasts reports made for isolated protein lacking the cofactor. Moreover, using DNA electrochemistry, we find that the cluster coordinated by UvrC is redox-active and participates in DNA-mediated charge transport chemistry with a DNA-bound midpoint potential of 90 mV vs NHE. This work highlights that the [4Fe4S] center is critical to UvrC
- …