46 research outputs found

    COMPARISON BETWEEN ANALYTICAL PYROLYSIS AND NITROBENZENE OXIDATION FOR DETERMINATION OF SYRINGYL/GUAIACYL RATIO IN Eucalyptus spp. LIGNIN

    Get PDF
    Pyrolysis-gas chromatography/mass spectrometry (Py-GC-MS) was applied to measure the lignin syringyl/guaiacyl (S/G) ratio in E. dunni, E. grandis, E. nitens, E. urograndis, and E. urophylla woods. A total of 41 compounds were identified, of which 11 were derived from carbo-hydrates and 30 from lignins. The S/G ratio was calculated on the basis of the areas of peaks recorded in the pyrograms and compared with the results obtained by alkaline nitrobenzene oxidation. The values of S/G found by pyrolysis were similar for all the species using the compounds guaiacol, 4-methylguaiacol, 4-vinylguaiacol, vanillin, 4-ethylsyringol, 4-vinylsyringol, homosyringaldehyde, acetosyringone, and syringylacetone, as lignin markers. The selected markers were efficient for the deter-mination of S/G ratio in eucalyptus wood by Py-GC-MS. The Py-GC-MS technique produced results that are comparable to the nitrobenzene oxidation method, with the advantage of requiring small wood samples and a short analysis time

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Amazonia Camtrap: a data set of mammal, bird, and reptile species recorded with camera traps in the Amazon forest.

    Get PDF
    Abstract : The Amazon forest has the highest biodiversity on Earth. However, information on Amazonian vertebrate diversity is still deficient and scatteredacross the published, peer-reviewed, and gray literature and in unpublishedraw data. Camera traps are an effective non-invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazonregions to compile the most extensive data set of inventories of mammal,bird, and reptile species ever assembled for the area. The complete data setcomprises 154,123 records of 317 species (185 birds, 119 mammals, and13 reptiles) gathered from surveys from the Amazonian portion of eightcountries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru,Suriname, and Venezuela). The most frequently recorded species per taxawere: mammals:Cuniculus paca (11,907 records); birds: Pauxi tuberosa (3713 records); and reptiles:Tupinambis teguixin(716 records). The infor-mation detailed in this data paper opens up opportunities for new ecological studies at different spatial and temporal scales, allowing for a moreaccurate evaluation of the effects of habitat loss, fragmentation, climatechange, and other human-mediated defaunation processes in one of themost important and threatened tropical environments in the world. The data set is not copyright restricted; please cite this data paper when usingits data in publications and we also request that researchers and educator sinform us of how they are using these data
    corecore